• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Branchial toxicity of aluminium in soft acidic water in the brown trout, Salmo trutta L

Collins, Simon January 2001 (has links)
No description available.
2

Effect of temperature on gill morphology and ion transporter distribution in the gills of Koi carp (\kur{Cyprinus carpio L.}) / Effect of temperature on gill morphology and ion transporter distribution in the gills of Koi carp (\kur{Cyprinus carpio L.})

KRATOCHVILOVÁ, Hana January 2008 (has links)
The effect of temperature on the gill morphology and ion transporter distribution in the branchial epithelium of a freshwater teleost, the Koi carp (Cyprinus carpio, L.) was examined. Three different water temperatures were used to detect changes in expression level of transporter proteins in the gill epithelial cells. With increasing temperature, the expression level of all three ion transporters studied declined, and the gill lamellae protruded out of the cell mass, thus increasing the surface area of the branchial epithelium. A hypothetical organization of the transporter proteins within the ionocytes is proposed.
3

Vliv vybraných parametrů vod na morfologii žaber sivena amerického a strukturu ichthyofauny Jizerských hor / The effect of selected parameters of stream water on gill morphology of brook charr and the structure of ichthyofauna of the Jizera Mountains

Hušek, Jiří January 2010 (has links)
The occurrence of ichthyofauna on the territory of the Jizera Mountains (Northern Bohemia, Czech Republic) is limited, besides other factors, by the water chemistry. pH value and pH-related concentration of inorganic monomeric aluminum (Ali) are crucial parameters of the water, determining the survival of fish in streams. Low pH and high concentrations of Ali cause severe damages to fish gills. The thesis deals with the influence of the water chemistry on distribution of ichthyofauna in the Jizera Mts and gill morphology in brook charr (Salvelinus fontinalis), a dominant fish species of the upper plateau of the mountains. The results show that the species diversity of fish in acidified streams is lower than that in streams without meaningful acidic episodes. Histopathological analyses of gills of brook charr individuals from an acidified stream confirm, that low pH values and high concentrations of Ali have a cummulative effect and lead to degenerative changes on gills. Key words: The Jizera Mountains, ichthyofauna, brook charr, gill morphology, water chemistry, toxic aluminium, acidification
4

Consequences of Gill Remodeling on Na+ Transport in Goldfish, Carassius auratus

Bradshaw, Julia 08 February 2011 (has links)
Goldfish undergo an adaptive morphological change in their gills involving the reversible growth and loss of a mass of cells (interlamellar cell mass, ILCM) in between the lamellae depending on oxygen demand, which can be altered by the environment or metabolic demands of the individual. The ILCM contributes to decreased passive Na+ efflux across the gill. Active uptake is maintained by the re-distribution of the ionocytes expressing Na+-uptake relevant genes (NHEs and H+-ATPase) to the outer edge of the ILCM where they can establish contact with the external environment and/or lamellar epithelium. This adaptation is thought to be partly responsible for the extreme anoxia tolerance demonstrated by goldfish, which they experience on a seasonal basis living in a pond environment. Hypoxia and hypercapnia are frequently encountered in such freshwater environments and as such, the effect of the ILCM on the capacity for acid-base regulation was evaluated. Differences in the time course of acid excretion to the environment without effect on systemic pH regulation were likely the result of the ILCM.
5

Consequences of Gill Remodeling on Na+ Transport in Goldfish, Carassius auratus

Bradshaw, Julia 08 February 2011 (has links)
Goldfish undergo an adaptive morphological change in their gills involving the reversible growth and loss of a mass of cells (interlamellar cell mass, ILCM) in between the lamellae depending on oxygen demand, which can be altered by the environment or metabolic demands of the individual. The ILCM contributes to decreased passive Na+ efflux across the gill. Active uptake is maintained by the re-distribution of the ionocytes expressing Na+-uptake relevant genes (NHEs and H+-ATPase) to the outer edge of the ILCM where they can establish contact with the external environment and/or lamellar epithelium. This adaptation is thought to be partly responsible for the extreme anoxia tolerance demonstrated by goldfish, which they experience on a seasonal basis living in a pond environment. Hypoxia and hypercapnia are frequently encountered in such freshwater environments and as such, the effect of the ILCM on the capacity for acid-base regulation was evaluated. Differences in the time course of acid excretion to the environment without effect on systemic pH regulation were likely the result of the ILCM.
6

Consequences of Gill Remodeling on Na+ Transport in Goldfish, Carassius auratus

Bradshaw, Julia 08 February 2011 (has links)
Goldfish undergo an adaptive morphological change in their gills involving the reversible growth and loss of a mass of cells (interlamellar cell mass, ILCM) in between the lamellae depending on oxygen demand, which can be altered by the environment or metabolic demands of the individual. The ILCM contributes to decreased passive Na+ efflux across the gill. Active uptake is maintained by the re-distribution of the ionocytes expressing Na+-uptake relevant genes (NHEs and H+-ATPase) to the outer edge of the ILCM where they can establish contact with the external environment and/or lamellar epithelium. This adaptation is thought to be partly responsible for the extreme anoxia tolerance demonstrated by goldfish, which they experience on a seasonal basis living in a pond environment. Hypoxia and hypercapnia are frequently encountered in such freshwater environments and as such, the effect of the ILCM on the capacity for acid-base regulation was evaluated. Differences in the time course of acid excretion to the environment without effect on systemic pH regulation were likely the result of the ILCM.
7

Consequences of Gill Remodeling on Na+ Transport in Goldfish, Carassius auratus

Bradshaw, Julia January 2011 (has links)
Goldfish undergo an adaptive morphological change in their gills involving the reversible growth and loss of a mass of cells (interlamellar cell mass, ILCM) in between the lamellae depending on oxygen demand, which can be altered by the environment or metabolic demands of the individual. The ILCM contributes to decreased passive Na+ efflux across the gill. Active uptake is maintained by the re-distribution of the ionocytes expressing Na+-uptake relevant genes (NHEs and H+-ATPase) to the outer edge of the ILCM where they can establish contact with the external environment and/or lamellar epithelium. This adaptation is thought to be partly responsible for the extreme anoxia tolerance demonstrated by goldfish, which they experience on a seasonal basis living in a pond environment. Hypoxia and hypercapnia are frequently encountered in such freshwater environments and as such, the effect of the ILCM on the capacity for acid-base regulation was evaluated. Differences in the time course of acid excretion to the environment without effect on systemic pH regulation were likely the result of the ILCM.
8

Habitat, morfologia branquial e osmorregulação das arraias de água doce da bacia amazônica (Elasmobranchii: Potamotrygonidae) / Habitat, functional morphology and osmoregulation of Amazonian freshwater stingrays (Elasmobranchii: Potamotrygonidae)

Duncan, Wallice Luiz Paxiuba 29 August 2008 (has links)
Made available in DSpace on 2016-06-02T19:29:14Z (GMT). No. of bitstreams: 1 2200.pdf: 10791536 bytes, checksum: b6e0bb5ddedaa9d93d62362f66b60224 (MD5) Previous issue date: 2008-08-29 / Financiadora de Estudos e Projetos / The relationship between functional morphology of the gills, osmoregulatory physiology, and habitats of the freshwater stingrays (family Potamotrygonidae) was investigated. Potamotrygonid gills have a rather unique external and internal anatomy and organization compared with other marine and/or euryhaline rays. The filaments on the hemibranchs are usually longer and numerous in the second arch. A protuberance was observed on the leading edge of the filaments. The epithelium that covers the gill filaments and lamellae is composed primarily of pavement cells (PVCs), mucous cells (MCs) and chloride cells (CCs). The PVCs showed PAS-positive reactivity. In addition, studies using transmission electron microscopy (TEM) indicate that PVCs possess subapical secretory granules or vesicles that contain mucous material. Large mucous cells were observed with Alcian blue and PAS reaction suggesting the presence of acid and neutral mucopolysaccharides, respectively. Particular attention was focused on the chloride cells. Na+/K+ -ATPase-rich cells (chloride cell, CC-NKA) were frequently found on the trailing edge and in the interlamellar spaces. They were also found on the lamellae, although generally towards the base. The number of CC-NKA and Na+/K+ -ATPase activity were greatest in arch IV compared with the other branchial arches. The basolateral membrane of the chloride cell does has moderate infoldings, and they are likely the site of Na+/K+ -ATPase activity. A surprising result was observed in Potamotrygon sp., in which chloride cells were arranged in large groups in the interlamellar region, not observed in other potamotrygonid species. This multicellular complex of chloride cell is certainly unusual, and may provide a micro-environment suitable to ion uptake from the acidic and ion-poor water of the Rio Negro basin. Potamotrygonid stingrays exhibit typical teleostean body fluid chemistry. These results were analyzed based on the organism-environment interaction. Amazonian rivers, such as Rio Amazonas, Rio Negro, and Rio Tapajós are spatially heterogeneous in their physical and chemical features. In this regard, it is apparent that some distribution patterns of the family Potamotrygonidae may be related to the type of water (e.g white, black and clearwater). The hydrographic barrier hypothesis was tested in Potamotrygon sp. In this ray, plasma [Na+], [Cl-], osmolality and kidney Na+/K+ -ATPase activity decreased after acclimatization to water of the Rio Branco compared to Rio Negro-acclimatized animals. These findings suggest that whitewater-associated changes on the ion and plasma osmolality are due to reduction in the renal Na+/K+ -ATPase activity resulting in an ion loss to the environment. In our biogeographic scenario, some water types may act as an expressive hydrographic barrier for the isolation of endemic potamotrygonid species. On the other hand, Paratrygon aiereba, a widespread stingray that lives in white, clear and blackwaters in the Amazon basin exhibited some physiological differences related to the aquatic environment. Plasma osmolality, urea and ion concentration were higher in whitewater, as compared to blackwater rays. This fact may be explained as an example of phenotypic plasticity, usually expressed in aquatic animals in environments with different aquatic compositions. / Foram analisadas as relações entre a morfologia funcional das brânquias, fisiologia osmorregulatória e habitats das arraias de água doce da família Potamotrygonidae. A organização geral das brânquias dos potamotrigonídeos é semelhante aos demais elasmobrânquios. As hemibrânquias dos potamotrigonídeos possuem entre 74 a 103 filamentos. Em cada filamento observa-se uma protuberância, cujo epitélio é constituído pelas mesmas células diferenciadas que revestem os filamentos e as lamelas dos demais elasmobrânquios: células pavimentosas, células mucosas e células cloreto. As células pavimentosas (CPVs) são PAS-positivas evidenciando a síntese de mucosubstâncias neutras. Estudos em microscopia eletrônica de transmissão (MET) evidenciam a presença de pequenas vesículas subapicais contendo material electrondenso nas CPVs. As células mucosas são grandes e possuem reação Alcian blue e PAS-positivas sugerindo produção de mucosubstâncias ácidas e neutras, respectivamente. As células cloreto imuno-positivas para a Na+/K+-ATPase (CC-NKA) são mais freqüentemente nos espaços interlamelares principalmente no 4º arco branquial. A intensa imunomarcação na periferia citoplasmática das CCs-NKA e os estudos em MET demonstram a presença de moderadas invaginações na região basolateral das células cloreto. Em Potamotrygon sp. (≈arraia cururu, espécie nova) as CCs-NKA agrupam-se em complexos multicelulares, os quais podem ser importantes sítios para absorção de íons a partir de um ambiente extremamente ácido e pobre em sais, como as águas do Rio Negro. As concentrações dos íons e uréia nos compartimentos corporais suportam a semelhança entre o sangue dos potamotrigonídeos e dos teleósteos de água doce. Estes resultados foram analisados com base na natureza da interação organismo-ambiente dos potamotrigonídeos, pois muitos dos rios amazônicos (Amazonas, Negro e Tapajós) são espacialmente heterogêneos do ponto de vista físico-quimico devido às suas origens geológicas. Sugere-se que os padrões de distribuição das arraias de água doce podem estar associados ao tipo água (branca, preta e clara). Com base nas diferenças físicas e químicas entre os rios, a hipótese da barreira hidrográfica foi testada em Potamotrygon sp., uma espécie endêmica do Rio Negro. Esta arraia quando exposta às águas do Rio Branco apresenta redução significativa nas [Na+], [Cl-], osmolalidade e atividade da Na+/K+-ATPase renal. A redução na NKA renal pode ter provocado a perda desnecessária de íons, e consequentemente uma falha nos processos osmorregulatórios. No contexto biogeográfico, explorar um ambiente que impõe limites fisiológicos poderá se tornar uma barreira geográfica para a distribuição dessa espécie. Por outro lado, exemplares de Paratrygon aiereba coletados no Rio Negro e Rio Solimões/Amazonas sugerem a presença de estratégias diferenciais (plasticidade fenotípica) para adaptação em diferentes habitats, os quais incluem ajustes osmorregulatórios de acordo com as características físicas e químicas da água.
9

Intermittent hypoxia elicits a unique physiological coping strategy in Fundulus killifish

Borowiec, Brittney G. January 2019 (has links)
Fish encounter daily cycles of hypoxia in the wild, but the physiological strategies for coping with repeated cycles of normoxia and hypoxia (intermittent hypoxia) are poorly understood. Contrastingly, the physiological strategies for coping with continuous (constant) exposure to hypoxia have been studied extensively in fish. The main objective of this thesis was to understand how Fundulus killifish cope with a diurnal cycle of intermittent hypoxia, an ecologically relevant pattern of aquatic hypoxia in the natural environment. To do this, I characterized the effects of intermittent hypoxia on hypoxia tolerance, oxygen transport, metabolism, and the oxidative stress defense system of killifish, and compared these effects to fish exposed to normoxia, a single cycle of hypoxia-normoxia, and constant hypoxia. Specifically, I studied the following topics: (i) how acclimation to intermittent hypoxia modifies hypoxia tolerance, and the hypoxia acclimation response of Fundulus heteroclitus (Chapter 2), (ii) metabolic adjustments occurring during a hypoxia-reoxygenation cycle (Chapter 3), (iii) how acclimation to intermittent hypoxia alters O2 transport capacity and maximal aerobic metabolic rate (Chapter 4), (iv) the effects of hypoxia and reoxygenation on reactive oxygen species and oxidative stress (Chapter 5), and (v) variation in hypoxia tolerance and in the hypoxia acclimation responses across Fundulus fishes (Chapter 6). Killifish rely on a unique and effective physiological strategy to cope with intermittent hypoxia, and that this strategy is distinct from both the response to a single bout of acute hypoxia-reoxygenation (12 h hypoxia followed by 6 h reoxygenation) and to chronic exposure to constant hypoxia (24 h hypoxia per day for 28 d). Key features of the acclimation response to intermittent hypoxia include (i) maintenance of resting O2 consumption rate in hypoxia followed by a substantial increase in O2 consumption rate during recovery in normoxia, (ii) reversible increases in blood O2 carrying capacity during hypoxia bouts, (iii) minimal recruitment of anaerobic metabolism during hypoxia bouts, and (iv) protection of tissues from oxidative damage despite alterations in the homeostasis of reactive oxygen species and cellular redox status. Of these features, (i) is unique to intermittent hypoxia, (ii) also occurs in fish exposed to acute hypoxia-reoxygenation, and (iii) and (iv) are observed in both fish acclimated to intermittent hypoxia as well as those acclimated to constant hypoxia. This is the most extensive investigation to date on how fish cope with the energetic and oxidative stress challenges of intermittent hypoxia, and how these responses differ from constant hypoxia. This thesis adds substantial insight into the general mechanisms by which animals can respond to an ecologically important but poorly understood feature of the aquatic environment. / Dissertation / Doctor of Philosophy (PhD) / Oxygen levels in the aquatic environment are dynamic. Many fishes routinely encounter changes in oxygen content in their environment. However, we have very little understanding of how cycles between periods of low oxygen (hypoxia) and periods of high oxygen (normoxia) affect the physiology of fish. This thesis investigated how Fundulus killifish cope with daily cycles between hypoxia and normoxia (intermittent hypoxia) by modifying oxygen transport, metabolism, and oxidative stress defense systems. I found that killifish rely on a unique and effective physiological strategy to cope with intermittent hypoxia, and that this strategy is distinct from how they respond to a single bout of hypoxia (followed by normoxia) and to a constant pattern of only hypoxia. This is the most extensive investigation to date on how fish respond to the challenges of intermittent hypoxia, an understudied but ecologically important type of aquatic hypoxia.

Page generated in 0.0537 seconds