1 |
An Acrotelm Transplant Experiment on a Cutover Peatland-Effects on Moisture Dynamics and CO2 ExchangeCagampan, Jason P. 09 1900 (has links)
<p> Natural peatlands are an important component of the global carbon cycle representing a net long-term sink of atmospheric carbon dioxide (CO2). The natural carbon storage function of these ecosystems can be severely impacted due to peatland drainage and peat extraction leading to large and persistent sources of atmospheric CO2 following peat extraction abandonment. Moreover, the cutover peatland has a low and variable water table position and high soil-water tension at the surface which creates harsh ecological and microclimatic conditions for vegetation reestablishment, particularly peat-forming Sphagnum moss. Standard restoration techniques aim to restore the peatland to a carbon accumulating system through various water management techniques to improve hydrological conditions and by reintroducing Sphagnum at the surface. However, restoring the hydrology of peatlands can be expensive due to the cost of implementing the various restoration techniques. The goal of this study is to examine a new extraction-restoration technique where the acrotelm is preserved and replaced on the cutover surface. More specifically, this thesis examines the effects of an acrotelm transplant experiment on the hydrology (i.e. water table, soil moisture and soil-water
tension) and peatland-atmosphere CO2 exchange at a cutover peatland.</p> <p> The experimental acrotelm restoration technique maintained both high water table and moisture conditions providing sufficient water at the surface for Sphagnum moss. Furthermore, the high moisture conditions and low soil-water tensions compared to an adjacent natural site were maintained well above the measured critical Sphagnum threshold of 33% (-100 mb) VMC further providing favourable conditions for Sphagnum moss survival and growth.</p> <p> Peat respiration at the experimental restored acrotelm (110.5 g C m-2) was considerably lower than the natural peatland (144.8 and 203.7 g C m-2). However, gross ecosystem production (GEP) at the experimental site (-54.0 and -34.4 g C m-2) was significantly reduced compared to the natural site (-179.2 and -162.0 g C m-2). Consequently this resulted in a shift towards a net source of CO2 to the atmosphere over the season at the experimental site (78.5 and 56.5 g C m-2) and a sink of CO2 at the natural site (-17.6 and -22.8 g C m-2).</p> <p> Light response curves indicated that maximum GEP was considerably lower at the experimental site; however it is likely that the percentage of living and dead vegetation at the plots post restoration had a large control on this lower productivity as plots with more living vegetation had higher overall productivity (GEP). Despite wetter conditions at the experimental site, large diurnal variations in moisture (~30%) were observed suggesting disturbance to the peat structure. Although soil-water retention analysis and physical peat properties indicated that no apparent structural change in peat structure occurred, it is theorized that a change in volume in the capitula may enhance the wetting and drying cycles in moisture. Lateral expansion/contraction within the peat matrix may occur due to spaces (gaps/fissures) left between the replaced acrotelm blocks from the extraction-restoration process promoting large changes in moisture which consequently can affect the gas exchange process at the surface. Large changes in peat and capitual moisture have been shown to affect productivity leading to variable GEP and enhanced respiration, making it important to limit the moisture variability at the surface from a carbon cycling perspective. Therefore it is likely that a combination of both physiological health of the vegetation and wetting/drying cycles contributed to lower GEP, suggesting the importance of limiting disturbance at the surface during the extraction and restoration process.</p> <p> The new extraction-restoration technique has potential to return a peatland to both near-natural hydrological conditions and towards a net sink of atmospheric CO2. The replaced acrotelm on the cutover surface aided in maintaining adequate moisture conditions thereby provided adequate conditions for Sphagnum survival and reestablishment. However, the ability of the system to remain a net sink of CO2 as like the natural site was not observed post-disturbance due to differences in productivity. Nevertheless, the experimental site did maintain limited productivity post-extraction indicating that the carbon dynamics of the system was maintained due to this acrotelm restoration process potentially returning the ecosystem towards a natural sink of
atmospheric CO2 over a longer period time.</p> / Thesis / Master of Science (MSc)
|
2 |
Multispectral imaging of Sphagnum canopies: measuring the spectral response of three indicator species to a fluctuating water table at Burns BogElves, Andrew 02 May 2022 (has links)
Northern Canadian peatlands contain vast deposits of carbon. It is with growing urgency that we seek a better understanding of their assimilative capacity. Assimilative capacity and peat accumulation in raised bogs are linked to primary productivity of resident Sphagnum species. Understanding moisture-mediated photosynthesis of Sphagnum spp. is central to understanding peat production rates. The relationship between depth to water table fluctuation and spectral reflectance of Sphagnum moss was investigated using multispectral imaging at a recovering raised bog on the southwest coast of British Columbia, Canada. Burns Bog is a temperate oceanic ombrotrophic bog. Three ecohydrological indicator species of moss were chosen for monitoring: S. capillifolium, S. papillosum, and S. cuspidatum. Three spectral vegetation indices (SVIs) were used to characterize Sphagnum productivity: the normalized difference vegetation index 660, the chlorophyll index, and the photochemical reflectance index.
In terms of spectral sensitivity and the appropriateness of SVIs to species and field setting, we found better performance for the normalized difference vegetation index 660 in the discrimination of moisture mediated species-specific reflectance signals. The role that spatiotemporal scale and spectral mixing can have on reflectance signal fidelity was tested. We were specifically interested in the relationship between changes in the local water table and Sphagnum reflectance response, and whether shifting between close spatial scales can affect the statistical strength of this relationship. We found a loss of statistical significance when shifting from the species-specific cm2 scale to the spectrally mixed dm2 scale. This spatiospectral uncoupling of the moisture mediated reflectance signal has implications for the accuracy and reliability of upscaling from plot based measurements. In terms of species-specific moisture mediated reflectance signals, we were able to effectively discriminate between the three indicator species of Sphagnum along the hummock-to-hollow gradient. We were also able to confirm Sphagnum productivity and growth outside of the vascular growing season, establishing clear patterns of reflectance correlated with changes in the local moisture regime. The strongest relationships for moisture mediated Sphagnum productivity were found in the hummock forming species S. capillifolium. Each indicator Sphagnum spp. of peat has distinct functional traits adapted to its preferred position along the ecohydrological gradient. We also discovered moisture mediated and species-specific reflectance phenologies. These phenospectral characteristics of Sphagnum can inform future monitoring work, including the creation of a regionally specific phenospectral library. It’s recommended that further close scale multispectral monitoring be carried out incorporating more species of moss, as well as invasive and upland species of concern. Pervasive vascular reflectance bias in remote sensing products has implications for the reliability of peatland modelling. Avoiding vascular bias, targeted spectral monitoring of Sphagnum indicator species provides a more reliable measure for the modelling of peatland productivity and carbon assimilation estimates. / Graduate
|
Page generated in 0.0315 seconds