21 |
Numerical Algorithms for Optimization Problems in Genetical AnalysisMishchenko, Kateryna January 2008 (has links)
<p>The focus of this thesis is on numerical algorithms for efficient solution of QTL analysis problem in genetics.</p><p>Firstly, we consider QTL mapping problems where a standard least-squares model is used for computing the model fit. We develop optimization methods for the local problems in a hybrid global-local optimization scheme for determining the optimal set of QTL locations. Here, the local problems have constant bound constraints and may be non-convex and/or flat in one or more directions. We propose an enhanced quasi-Newton method and also implement several schemes for constrained optimization. The algorithms are adopted to the QTL optimization problems. We show that it is possible to use the new schemes to solve problems with up to 6 QTLs efficiently and accurately, and that the work is reduced with up to two orders magnitude compared to using only global optimization.</p><p>Secondly, we study numerical methods for QTL mapping where variance component estimation and a REML model is used. This results in a non-linear optimization problem for computing the model fit in each set of QTL locations. Here, we compare different optimization schemes and adopt them for the specifics of the problem. The results show that our version of the active set method is efficient and robust, which is not the case for methods used earlier. We also study the matrix operations performed inside the optimization loop, and develop more efficient algorithms for the REML computations. We develop a scheme for reducing the number of objective function evaluations, and we accelerate the computations of the derivatives of the log-likelihood by introducing an efficient scheme for computing the inverse of the variance-covariance matrix and other components of the derivatives of the log-likelihood.</p>
|
22 |
Numerical Algorithms for Optimization Problems in Genetical AnalysisMishchenko, Kateryna January 2008 (has links)
The focus of this thesis is on numerical algorithms for efficient solution of QTL analysis problem in genetics. Firstly, we consider QTL mapping problems where a standard least-squares model is used for computing the model fit. We develop optimization methods for the local problems in a hybrid global-local optimization scheme for determining the optimal set of QTL locations. Here, the local problems have constant bound constraints and may be non-convex and/or flat in one or more directions. We propose an enhanced quasi-Newton method and also implement several schemes for constrained optimization. The algorithms are adopted to the QTL optimization problems. We show that it is possible to use the new schemes to solve problems with up to 6 QTLs efficiently and accurately, and that the work is reduced with up to two orders magnitude compared to using only global optimization. Secondly, we study numerical methods for QTL mapping where variance component estimation and a REML model is used. This results in a non-linear optimization problem for computing the model fit in each set of QTL locations. Here, we compare different optimization schemes and adopt them for the specifics of the problem. The results show that our version of the active set method is efficient and robust, which is not the case for methods used earlier. We also study the matrix operations performed inside the optimization loop, and develop more efficient algorithms for the REML computations. We develop a scheme for reducing the number of objective function evaluations, and we accelerate the computations of the derivatives of the log-likelihood by introducing an efficient scheme for computing the inverse of the variance-covariance matrix and other components of the derivatives of the log-likelihood.
|
23 |
Nonnegative matrix and tensor factorizations, least squares problems, and applicationsKim, Jingu 14 November 2011 (has links)
Nonnegative matrix factorization (NMF) is a useful dimension reduction method that has been investigated and applied in various areas. NMF is considered for high-dimensional data in which each element has a nonnegative value, and it provides a low-rank approximation formed by factors whose elements are also nonnegative. The nonnegativity constraints imposed on the low-rank factors not only enable natural interpretation but also reveal the hidden structure of data. Extending the benefits of NMF to multidimensional arrays, nonnegative tensor factorization (NTF) has been shown to be successful in analyzing complicated data sets. Despite the success, NMF and NTF have been actively developed only in the recent decade, and algorithmic strategies for computing NMF and NTF have not been fully studied. In this thesis, computational challenges regarding NMF, NTF, and related least squares problems are addressed.
First, efficient algorithms of NMF and NTF are investigated based on a connection from the NMF and the NTF problems to the nonnegativity-constrained least squares (NLS) problems. A key strategy is to observe typical structure of the NLS problems arising in the NMF and the NTF computation and design a fast algorithm utilizing the structure. We propose an accelerated block principal pivoting method to solve the NLS problems, thereby significantly speeding up the NMF and NTF computation. Implementation results with synthetic and real-world data sets validate the efficiency of the proposed method.
In addition, a theoretical result on the classical active-set method for rank-deficient NLS problems is presented. Although the block principal pivoting method appears generally more efficient than the active-set method for the NLS problems, it is not applicable for rank-deficient cases. We show that the active-set method with a proper starting vector can actually solve the rank-deficient NLS problems without ever running into rank-deficient least squares problems during iterations.
Going beyond the NLS problems, it is presented that a block principal pivoting strategy can also be applied to the l1-regularized linear regression. The l1-regularized linear regression, also known as the Lasso, has been very popular due to its ability to promote sparse solutions. Solving this problem is difficult because the l1-regularization term is not differentiable. A block principal pivoting method and its variant, which overcome a limitation of previous active-set methods, are proposed for this problem with successful experimental results.
Finally, a group-sparsity regularization method for NMF is presented. A recent challenge in data analysis for science and engineering is that data are often represented in a structured way. In particular, many data mining tasks have to deal with group-structured prior information, where features or data items are organized into groups. Motivated by an observation that features or data items that belong to a group are expected to share the same sparsity pattern in their latent factor representations, We propose mixed-norm regularization to promote group-level sparsity. Efficient convex optimization methods for dealing with the regularization terms are presented along with computational comparisons between them. Application examples of the proposed method in factor recovery, semi-supervised clustering, and multilingual text analysis are presented.
|
24 |
Tópicos em otimização com restrições lineares / Topics on linearly-constrained optimizationMarina Andretta 24 July 2008 (has links)
Métodos do tipo Lagrangiano Aumentado são muito utilizados para minimização de funções sujeitas a restrições gerais. Nestes métodos, podemos separar o conjunto de restrições em dois grupos: restrições fáceis e restrições difíceis. Dizemos que uma restrição é fácil se existe um algoritmo disponível e eficiente para resolver problemas restritos a este tipo de restrição. Caso contrário, dizemos que a restrição é difícil. Métodos do tipo Lagrangiano aumentado resolvem, a cada iteração, problemas sujeitos às restrições fáceis, penalizando as restrições difíceis. Problemas de minimização com restrições lineares aparecem com freqüência, muitas vezes como resultados da aproximação de problemas com restrições gerais. Este tipo de problema surge também como subproblema de métodos do tipo Lagrangiano aumentado. Assim, uma implementação eficiente para resolver problemas com restrições lineares é relevante para a implementação eficiente de métodos para resolução de problemas de programação não-linear. Neste trabalho, começamos considerando fáceis as restrições de caixa. Introduzimos BETRA-ESPARSO, uma versão de BETRA para problemas de grande porte. BETRA é um método de restrições ativas que utiliza regiões de confiança para minimização em cada face e gradiente espectral projetado para sair das faces. Utilizamos BETRA (denso ou esparso) na resolução dos subproblemas que surgem a cada iteração de ALGENCAN (um método de lagrangiano aumentado). Para decidir qual algoritmo utilizar para resolver cada subproblema, desenvolvemos regras que escolhem um método para resolver o subproblema de acordo com suas características. Em seguida, introduzimos dois algoritmos de restrições ativas desenvolvidos para resolver problemas com restrições lineares (BETRALIN e GENLIN). Estes algoritmos utilizam, a cada iteração, o método do Gradiente Espectral Projetado Parcial quando decidem mudar o conjunto de restrições ativas. O método do gradiente Espectral Projetado Parcial foi desenvolvido especialmente para este propósito. Neste método, as projeções são computadas apenas em um subconjunto das restrições, com o intuito de torná-las mais eficientes. Por fim, tendo introduzido um método para minimização com restrições lineares, consideramos como fáceis as restrições lineares. Incorporamos BETRALIN e GENLIN ao arcabouço de Lagrangianos aumentados e verificamos experimentalmente a eficiência e eficácia destes métodos que trabalham explicitamente com restrições lineares e penalizam as demais. / Augmented Lagrangian methods are widely used to solve general nonlinear programming problems. In these methods, one can split the set of constraints in two groups: the set of easy and hard constraints. A constraint is called easy if there is an efficient method available to solve problems subject to that kind of constraint. Otherwise, the constraints are called hard. Augmented Lagrangian methods solve, at each iteration, problems subject to the set of easy constraints while penalizing the set of hard constraints. Linearly constrained problems appear frequently, sometimes as a result of a linear approximation of a problem, sometimes as an augmented Lagrangian subproblem. Therefore, an efficient method to solve linearly constrained problems is important for the implementation of efficient methods to solve nonlinear programming problems. In this thesis, we begin by considering box constraints as the set of easy constraints. We introduce a version of BETRA to solve large scale problems. BETRA is an active-set method that uses a trust-region strategy to work within the faces and spectral projected gradient to leave the faces. To solve each iteration\'s subproblem of ALGENCAN (an augmented Lagrangian method) we use either the dense or the sparse version of BETRA. We develope rules to decide which box-constrained inner solver should be used at each augmented Lagrangian iteration that considers the main characteristics of the problem to be solved. Then, we introduce two active-set methods to solve linearly constrained problems (BETRALIN and GENLIN). These methods use Partial Spectral Projected Gradient method to change the active set of constraints. The Partial Spectral Projected Gradient method was developed specially for this purpose. It computes projections onto a subset of the linear constraints, aiming to make the projections more efficient. At last, having introduced a linearly-constrained solver, we consider the set of linear constraints as the set of easy constraints. We use BETRALIN and GENLIN in the framework of augmented Lagrangian methods and verify, using numerical experiments, the efficiency and robustness of those methods that work with linear constraints and penalize the nonlinear constraints.
|
25 |
O Método de Newton e a Função Penalidade Quadrática aplicados ao problema de fluxo de potência ótimo / The Newton\'s method and quadratic penalty function applied to the Optimal Power Flow ProblemCarlos Ednaldo Ueno Costa 18 February 1998 (has links)
Neste trabalho é apresentada uma abordagem do Método de Newton associado à função penalidade quadrática e ao método dos conjuntos ativos na solução do problema de Fluxo de Potência Ótimo (FPO). A formulação geral do problema de FPO é apresentada, assim como a técnica utilizada na resolução do sistema de equações. A fatoração da matriz Lagrangeana é feita por elementos ao invés das estruturas em blocos. A característica de esparsidade da matriz Lagrangeana é levada em consideração. Resultados dos testes realizados em 4 sistemas (3, 14, 30 e 118 barras) são apresentados. / This work presents an approach on Newton\'s Method associated with the quadratic penalty function and the active set methods in the solution of Optimal Power Flow Problem (OPF). The general formulation of the OPF problem is presented, as will as the technique used in the equation systems resolution. The Lagrangean matrix factorization is carried out by elements instead of structures in blocks. The characteristic of sparsity of the Lagrangean matrix is taken in to account. Numerical results of tests realized in systems of 3, 14, 30 and 118 buses are presented to show the efficiency of the method.
|
26 |
Stochastic Combinatorial Optimization / Optimisation combinatoire stochastiqueCheng, Jianqiang 08 November 2013 (has links)
Dans cette thèse, nous étudions trois types de problèmes stochastiques : les problèmes avec contraintes probabilistes, les problèmes distributionnellement robustes et les problèmes avec recours. Les difficultés des problèmes stochastiques sont essentiellement liées aux problèmes de convexité du domaine des solutions, et du calcul de l’espérance mathématique ou des probabilités qui nécessitent le calcul complexe d’intégrales multiples. A cause de ces difficultés majeures, nous avons résolu les problèmes étudiées à l’aide d’approximations efficaces.Nous avons étudié deux types de problèmes stochastiques avec des contraintes en probabilités, i.e., les problèmes linéaires avec contraintes en probabilité jointes (LLPC) et les problèmes de maximisation de probabilités (MPP). Dans les deux cas, nous avons supposé que les variables aléatoires sont normalement distribués et les vecteurs lignes des matrices aléatoires sont indépendants. Nous avons résolu LLPC, qui est un problème généralement non convexe, à l’aide de deux approximations basée sur les problèmes coniques de second ordre (SOCP). Sous certaines hypothèses faibles, les solutions optimales des deux SOCP sont respectivement les bornes inférieures et supérieures du problème du départ. En ce qui concerne MPP, nous avons étudié une variante du problème du plus court chemin stochastique contraint (SRCSP) qui consiste à maximiser la probabilité de la contrainte de ressources. Pour résoudre ce problème, nous avons proposé un algorithme de Branch and Bound pour calculer la solution optimale. Comme la relaxation linéaire n’est pas convexe, nous avons proposé une approximation convexe efficace. Nous avons par la suite testé nos algorithmes pour tous les problèmes étudiés sur des instances aléatoires. Pour LLPC, notre approche est plus performante que celles de Bonferroni et de Jaganathan. Pour MPP, nos résultats numériques montrent que notre approche est là encore plus performante que l’approximation des contraintes probabilistes individuellement.La deuxième famille de problèmes étudiés est celle relative aux problèmes distributionnellement robustes où une partie seulement de l’information sur les variables aléatoires est connue à savoir les deux premiers moments. Nous avons montré que le problème de sac à dos stochastique (SKP) est un problème semi-défini positif (SDP) après relaxation SDP des contraintes binaires. Bien que ce résultat ne puisse être étendu au cas du problème multi-sac-à-dos (MKP), nous avons proposé deux approximations qui permettent d’obtenir des bornes de bonne qualité pour la plupart des instances testées. Nos résultats numériques montrent que nos approximations sont là encore plus performantes que celles basées sur les inégalités de Bonferroni et celles plus récentes de Zymler. Ces résultats ont aussi montré la robustesse des solutions obtenues face aux fluctuations des distributions de probabilités. Nous avons aussi étudié une variante du problème du plus court chemin stochastique. Nous avons prouvé que ce problème peut se ramener au problème de plus court chemin déterministe sous certaine hypothèses. Pour résoudre ce problème, nous avons proposé une méthode de B&B où les bornes inférieures sont calculées à l’aide de la méthode du gradient projeté stochastique. Des résultats numériques ont montré l’efficacité de notre approche. Enfin, l’ensemble des méthodes que nous avons proposées dans cette thèse peuvent s’appliquer à une large famille de problèmes d’optimisation stochastique avec variables entières. / In this thesis, we studied three types of stochastic problems: chance constrained problems, distributionally robust problems as well as the simple recourse problems. For the stochastic programming problems, there are two main difficulties. One is that feasible sets of stochastic problems is not convex in general. The other main challenge arises from the need to calculate conditional expectation or probability both of which are involving multi-dimensional integrations. Due to the two major difficulties, for all three studied problems, we solved them with approximation approaches.We first study two types of chance constrained problems: linear program with joint chance constraints problem (LPPC) as well as maximum probability problem (MPP). For both problems, we assume that the random matrix is normally distributed and its vector rows are independent. We first dealt with LPPC which is generally not convex. We approximate it with two second-order cone programming (SOCP) problems. Furthermore under mild conditions, the optimal values of the two SOCP problems are a lower and upper bounds of the original problem respectively. For the second problem, we studied a variant of stochastic resource constrained shortest path problem (called SRCSP for short), which is to maximize probability of resource constraints. To solve the problem, we proposed to use a branch-and-bound framework to come up with the optimal solution. As its corresponding linear relaxation is generally not convex, we give a convex approximation. Finally, numerical tests on the random instances were conducted for both problems. With respect to LPPC, the numerical results showed that the approach we proposed outperforms Bonferroni and Jagannathan approximations. While for the MPP, the numerical results on generated instances substantiated that the convex approximation outperforms the individual approximation method.Then we study a distributionally robust stochastic quadratic knapsack problems, where we only know part of information about the random variables, such as its first and second moments. We proved that the single knapsack problem (SKP) is a semedefinite problem (SDP) after applying the SDP relaxation scheme to the binary constraints. Despite the fact that it is not the case for the multidimensional knapsack problem (MKP), two good approximations of the relaxed version of the problem are provided which obtain upper and lower bounds that appear numerically close to each other for a range of problem instances. Our numerical experiments also indicated that our proposed lower bounding approximation outperforms the approximations that are based on Bonferroni's inequality and the work by Zymler et al.. Besides, an extensive set of experiments were conducted to illustrate how the conservativeness of the robust solutions does pay off in terms of ensuring the chance constraint is satisfied (or nearly satisfied) under a wide range of distribution fluctuations. Moreover, our approach can be applied to a large number of stochastic optimization problems with binary variables.Finally, a stochastic version of the shortest path problem is studied. We proved that in some cases the stochastic shortest path problem can be greatly simplified by reformulating it as the classic shortest path problem, which can be solved in polynomial time. To solve the general problem, we proposed to use a branch-and-bound framework to search the set of feasible paths. Lower bounds are obtained by solving the corresponding linear relaxation which in turn is done using a Stochastic Projected Gradient algorithm involving an active set method. Meanwhile, numerical examples were conducted to illustrate the effectiveness of the obtained algorithm. Concerning the resolution of the continuous relaxation, our Stochastic Projected Gradient algorithm clearly outperforms Matlab optimization toolbox on large graphs.
|
27 |
Algorithmes gloutons orthogonaux sous contrainte de positivité / Orthogonal greedy algorithms for non-negative sparse reconstructionNguyen, Thi Thanh 18 November 2019 (has links)
De nombreux domaines applicatifs conduisent à résoudre des problèmes inverses où le signal ou l'image à reconstruire est à la fois parcimonieux et positif. Si la structure de certains algorithmes de reconstruction parcimonieuse s'adapte directement pour traiter les contraintes de positivité, il n'en va pas de même des algorithmes gloutons orthogonaux comme OMP et OLS. Leur extension positive pose des problèmes d'implémentation car les sous-problèmes de moindres carrés positifs à résoudre ne possèdent pas de solution explicite. Dans la littérature, les algorithmes gloutons positifs (NNOG, pour “Non-Negative Orthogonal Greedy algorithms”) sont souvent considérés comme lents, et les implémentations récemment proposées exploitent des schémas récursifs approchés pour compenser cette lenteur. Dans ce manuscrit, les algorithmes NNOG sont vus comme des heuristiques pour résoudre le problème de minimisation L0 sous contrainte de positivité. La première contribution est de montrer que ce problème est NP-difficile. Deuxièmement, nous dressons un panorama unifié des algorithmes NNOG et proposons une implémentation exacte et rapide basée sur la méthode des contraintes actives avec démarrage à chaud pour résoudre les sous-problèmes de moindres carrés positifs. Cette implémentation réduit considérablement le coût des algorithmes NNOG et s'avère avantageuse par rapport aux schémas approximatifs existants. La troisième contribution consiste en une analyse de reconstruction exacte en K étapes du support d'une représentation K-parcimonieuse par les algorithmes NNOG lorsque la cohérence mutuelle du dictionnaire est inférieure à 1/(2K-1). C'est la première analyse de ce type. / Non-negative sparse approximation arises in many applications fields such as biomedical engineering, fluid mechanics, astrophysics, and remote sensing. Some classical sparse algorithms can be straightforwardly adapted to deal with non-negativity constraints. On the contrary, the non-negative extension of orthogonal greedy algorithms is a challenging issue since the unconstrained least square subproblems are replaced by non-negative least squares subproblems which do not have closed-form solutions. In the literature, non-negative orthogonal greedy (NNOG) algorithms are often considered to be slow. Moreover, some recent works exploit approximate schemes to derive efficient recursive implementations. In this thesis, NNOG algorithms are introduced as heuristic solvers dedicated to L0 minimization under non-negativity constraints. It is first shown that the latter L0 minimization problem is NP-hard. The second contribution is to propose a unified framework on NNOG algorithms together with an exact and fast implementation, where the non-negative least-square subproblems are solved using the active-set algorithm with warm start initialisation. The proposed implementation significantly reduces the cost of NNOG algorithms and appears to be more advantageous than existing approximate schemes. The third contribution consists of a unified K-step exact support recovery analysis of NNOG algorithms when the mutual coherence of the dictionary is lower than 1/(2K-1). This is the first analysis of this kind.
|
Page generated in 0.053 seconds