Spelling suggestions: "subject:"adaptive automatization"" "subject:"adaptive automatisation""
1 |
Comparing Types Of Adaptive Automation Within A Multi-tasking EnvironmentTaylor, Grant S 01 January 2012 (has links)
Throughout the many years of research examining the various effects of automation on operator performance, stress, workload, etc., the focus has traditionally been on the level of automation, and the invocation methods used to alter it. The goal of the current study is to instead examine the utilization of various types of automation with the goal of better meeting the operator’s cognitive needs, thus improving their performance, workload, and stress. The task, control of a simulated unmanned robotic system, is designed to specifically stress the operator’s visual perception capabilities to a greater degree. Two types of automation are implemented to support the operator’s performance of the task: an auditory beep aid intended to support visual perception resources, and a driving aid automating control of the vehicle’s navigation, offloading physical action execution resources. Therefore, a comparison can be made between types of automation intended to specifically support the mental dimension that is under the greatest demand (the auditory beep) against those that do not (the driving automation). An additional evaluation is made to determine the benefit of adaptively adjusting the level of each type of automation based on the current level of task demand, as well as the influence of individual differences in personality. Results indicate that the use of the auditory beep aid does improve performance, but also increases Temporal Demand and Effort. Use of driving automation appears to disengage the operator from the task, eliciting a vigilance response. Adaptively altering the level of automation to meet task demands has a mixed effect on performance and workload (reducing both) when the auditory beep automation is used. However, adaptive driving automation is clearly detrimental, iv causing an increase in workload while decreasing performance. Higher levels of Neuroticism are related to poorer threat detection performance, but personality differences show no indication of moderating the effects of either of the experimental manipulations. The results of this study show that the type of automation implemented within an environment has a considerable impact on the operator, in terms of performance as well as cognitive/emotional state
|
2 |
Simulation-based Cognitive Workload Modeling And Evaluation Of Adaptive Automation Invoking And Revoking StrategiesRusnock, Christina 01 January 2013 (has links)
In human-computer systems, such as supervisory control systems, large volumes of incoming and complex information can degrade overall system performance. Strategically integrating automation to offload tasks from the operator has been shown to increase not only human performance but also operator efficiency and safety. However, increased automation allows for increased task complexity, which can lead to high cognitive workload and degradation of situational awareness. Adaptive automation is one potential solution to resolve these issues, while maintaining the benefits of traditional automation. Adaptive automation occurs dynamically, with the quantity of automated tasks changing in real-time to meet performance or workload goals. While numerous studies evaluate the relative performance of manual and adaptive systems, little attention has focused on the implications of selecting particular invoking or revoking strategies for adaptive automation. Thus, evaluations of adaptive systems tend to focus on the relative performance among multiple systems rather than the relative performance within a system. This study takes an intra-system approach specifically evaluating the relationship between cognitive workload and situational awareness that occurs when selecting a particular invoking-revoking strategy for an adaptive system. The case scenario is a human supervisory control situation that involves a system operator who receives and interprets intelligence outputs from multiple unmanned assets, and then identifies and reports potential threats and changes in the environment. In order to investigate this relationship between workload and situational awareness, discrete event simulation (DES) is used. DES is a standard technique in the analysis iv of systems, and the advantage of using DES to explore this relationship is that it can represent a human-computer system as the state of the system evolves over time. Furthermore, and most importantly, a well-designed DES model can represent the human operators, the tasks to be performed, and the cognitive demands placed on the operators. In addition to evaluating the cognitive workload to situational awareness tradeoff, this research demonstrates that DES can quite effectively model and predict human cognitive workload, specifically for system evaluation. This research finds that the predicted workload of the DES models highly correlates with well-established subjective measures and is more predictive of cognitive workload than numerous physiological measures. This research then uses the validated DES models to explore and predict the cognitive workload impacts of adaptive automation through various invoking and revoking strategies. The study provides insights into the workload-situational awareness tradeoffs that occur when selecting particular invoking and revoking strategies. First, in order to establish an appropriate target workload range, it is necessary to account for both performance goals and the portion of the workload-performance curve for the task in question. Second, establishing an invoking threshold may require a tradeoff between workload and situational awareness, which is influenced by the task’s location on the workload-situational awareness continuum. Finally, this study finds that revoking strategies differ in their ability to achieve workload and situational awareness goals. For the case scenario examined, revoking strategies based on duration are best suited to improve workload, while revoking strategies based on revoking thresholds are better for maintaining situational awareness.
|
3 |
Optimizing The Design Of Multimodal User InterfacesReeves, Leah 01 January 2007 (has links)
Due to a current lack of principle-driven multimodal user interface design guidelines, designers may encounter difficulties when choosing the most appropriate display modality for given users or specific tasks (e.g., verbal versus spatial tasks). The development of multimodal display guidelines from both a user and task domain perspective is thus critical to the achievement of successful human-system interaction. Specifically, there is a need to determine how to design task information presentation (e.g., via which modalities) to capitalize on an individual operator's information processing capabilities and the inherent efficiencies associated with redundant sensory information, thereby alleviating information overload. The present effort addresses this issue by proposing a theoretical framework (Architecture for Multi-Modal Optimization, AMMO) from which multimodal display design guidelines and adaptive automation strategies may be derived. The foundation of the proposed framework is based on extending, at a functional working memory (WM) level, existing information processing theories and models with the latest findings in cognitive psychology, neuroscience, and other allied sciences. The utility of AMMO lies in its ability to provide designers with strategies for directing system design, as well as dynamic adaptation strategies (i.e., multimodal mitigation strategies) in support of real-time operations. In an effort to validate specific components of AMMO, a subset of AMMO-derived multimodal design guidelines was evaluated with a simulated weapons control system multitasking environment. The results of this study demonstrated significant performance improvements in user response time and accuracy when multimodal display cues were used (i.e., auditory and tactile, individually and in combination) to augment the visual display of information, thereby distributing human information processing resources across multiple sensory and WM resources. These results provide initial empirical support for validation of the overall AMMO model and a sub-set of the principle-driven multimodal design guidelines derived from it. The empirically-validated multimodal design guidelines may be applicable to a wide range of information-intensive computer-based multitasking environments.
|
4 |
It’s smart, but you know, it lacks that human touch! : Exploring and designing for dynamic user control in AI-driven automated systems / Den är smart, men du vet, den saknar den där mänskliga touchen! : Utforska och designa för dynamisk användarkontroll i AI-drivna automatiserade systemÅkerblom-Andersson, Christina, Tjernström, Linnéa January 2024 (has links)
As Artificial Intelligence (AI) and automation become more intertwined, understanding their impact on user control is essential. This study investigates dynamic user control in AI-driven automated systems, particularly in work environments. While adaptive automation (AA) has been extensively studied, there's a gap in research on adaptable and hybrid automation, where users control the level of automation (LOA). We bridge this gap with a design-oriented case study structured into three phases, evaluating one adaptable and one hybrid prototype. By understanding real-world perspectives of users and providers of an AI-driven automation system, we address the question: "How can we support users with dynamic control when designing for human-centred automation?”. Our findings are synthesized into insights that suggest a preference for a hybrid approach; one that balances user and AI-system collaboration, providing adaptive and personalized support, without overwhelming adaptability. Overall, our results conclude the importance of human involvement in the automation process, underscoring the need for "human touch” in the design of humancentred automation (HCAI).
|
5 |
Flexible Automatisierung in Abhängigkeit von Mitarbeiterkompetenzen und –beanspruchungRiedel, Ralph, Schmalfuss, Franziska, Bojko, Michael, Mach, Sebastian 19 December 2017 (has links) (PDF)
Industrie 4.0 und aktuelle Entwicklungen in dem Bereich der produzierenden Unternehmen erfordern hohe Anpassungsleistungen von Menschen und von Maschinen gleichermaßen. In Smart Factories werden Produktionsmitarbeiter zu Wissensarbeitern. Dazu bedarf es neben neuen, intelligenten, technischen Lösungen auch neuer Ansätze für Arbeitsorganisation, Trainings- und Qualifizierungskonzepte, die mit adaptierbaren technischen Systemen flexibel zusammenarbeiten. Das durch die EU geförderte Projekt Factory2Fit entwickelt Lösungen für die Mensch-Technik-Interaktion in automatisierten Produktionssystemen, welche eine hohe Anpassungsfähigkeit an die Fähigkeiten, Kompetenzen und Präferenzen der individuellen Mitarbeiter bieten und damit gleichzeitig den Herausforderungen einer höchst kundenindividuellen Produktion gewachsen sind. Im vorliegenden Beitrag werden die grundlegenden Ziele und Ideen des Projektes vorgestellt sowie die Ansätze des Quantified-self im Arbeitskontext, die adaptive Automatisierung inklusive der verschiedenen Level der Automation sowie die spezifische Anwendung des partizipatorischen Designs näher beleuchtet. In den nächsten Arbeitsschritten innerhalb des Projektes gilt es nun, diese Konzepte um- und einzusetzen sowie zu validieren. Die interdisziplinäre Arbeitsweise sowie der enge Kontakt zwischen Wissenschafts-, Entwicklungs- und Anwendungspartnern sollten dazu beitragen, den Herausforderungen bei der Realisierung erfolgreich zu begegnen und zukunftsträchtige Smart Factory-Lösungen zu implementieren.
Das Projekt Factory2Fit wird im Rahmen von Horizon 2020, dem EU Rahmenprogramm für Forschung und Innovation (H2020/2014-2020), mit dem Förderkennzeichen 723277 gefördert.
|
6 |
The Use of Physiological Data and Machine Learning to Detect Stress Events for Adaptive AutomationFalkenberg, Zachary 26 July 2023 (has links)
No description available.
|
7 |
Reimagining Human-Machine Interactions through Trust-Based FeedbackKumar Akash (8862785) 17 June 2020 (has links)
<div>Intelligent machines, and more broadly, intelligent systems, are becoming increasingly common in the everyday lives of humans. Nonetheless, despite significant advancements in automation, human supervision and intervention are still essential in almost all sectors, ranging from manufacturing and transportation to disaster-management and healthcare. These intelligent machines<i> interact and collaborate</i> with humans in a way that demands a greater level of trust between human and machine. While a lack of trust can lead to a human's disuse of automation, over-trust can result in a human trusting a faulty autonomous system which could have negative consequences for the human. Therefore, human trust should be <i>calibrated </i>to optimize these human-machine interactions. This calibration can be achieved by designing human-aware automation that can infer human behavior and respond accordingly in real-time.</div><div><br></div><div>In this dissertation, I present a probabilistic framework to model and calibrate a human's trust and workload dynamics during his/her interaction with an intelligent decision-aid system. More specifically, I develop multiple quantitative models of human trust, ranging from a classical state-space model to a classification model based on machine learning techniques. Both models are parameterized using data collected through human-subject experiments. Thereafter, I present a probabilistic dynamic model to capture the dynamics of human trust along with human workload. This model is used to synthesize optimal control policies aimed at improving context-specific performance objectives that vary automation transparency based on human state estimation. I also analyze the coupled interactions between human trust and workload to strengthen the model framework. Finally, I validate the optimal control policies using closed-loop human subject experiments. The proposed framework provides a foundation toward widespread design and implementation of real-time adaptive automation based on human states for use in human-machine interactions.</div>
|
8 |
Flexible Automatisierung in Abhängigkeit von Mitarbeiterkompetenzen und –beanspruchungRiedel, Ralph, Schmalfuss, Franziska, Bojko, Michael, Mach, Sebastian January 2017 (has links)
Industrie 4.0 und aktuelle Entwicklungen in dem Bereich der produzierenden Unternehmen erfordern hohe Anpassungsleistungen von Menschen und von Maschinen gleichermaßen. In Smart Factories werden Produktionsmitarbeiter zu Wissensarbeitern. Dazu bedarf es neben neuen, intelligenten, technischen Lösungen auch neuer Ansätze für Arbeitsorganisation, Trainings- und Qualifizierungskonzepte, die mit adaptierbaren technischen Systemen flexibel zusammenarbeiten. Das durch die EU geförderte Projekt Factory2Fit entwickelt Lösungen für die Mensch-Technik-Interaktion in automatisierten Produktionssystemen, welche eine hohe Anpassungsfähigkeit an die Fähigkeiten, Kompetenzen und Präferenzen der individuellen Mitarbeiter bieten und damit gleichzeitig den Herausforderungen einer höchst kundenindividuellen Produktion gewachsen sind. Im vorliegenden Beitrag werden die grundlegenden Ziele und Ideen des Projektes vorgestellt sowie die Ansätze des Quantified-self im Arbeitskontext, die adaptive Automatisierung inklusive der verschiedenen Level der Automation sowie die spezifische Anwendung des partizipatorischen Designs näher beleuchtet. In den nächsten Arbeitsschritten innerhalb des Projektes gilt es nun, diese Konzepte um- und einzusetzen sowie zu validieren. Die interdisziplinäre Arbeitsweise sowie der enge Kontakt zwischen Wissenschafts-, Entwicklungs- und Anwendungspartnern sollten dazu beitragen, den Herausforderungen bei der Realisierung erfolgreich zu begegnen und zukunftsträchtige Smart Factory-Lösungen zu implementieren.
Das Projekt Factory2Fit wird im Rahmen von Horizon 2020, dem EU Rahmenprogramm für Forschung und Innovation (H2020/2014-2020), mit dem Förderkennzeichen 723277 gefördert.
|
Page generated in 0.0817 seconds