• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 632
  • 51
  • 44
  • 34
  • 28
  • 25
  • 22
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 1166
  • 1166
  • 493
  • 288
  • 278
  • 274
  • 257
  • 198
  • 139
  • 124
  • 105
  • 104
  • 101
  • 99
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Processing-Structure-Property Correlation for Additively Manufactured Metastable High Entropy Alloy

Agrawal, Priyanshi 08 1900 (has links)
In the present study both fusion based - laser powder bed fusion (LPBF), and solid state - additive friction stir deposition (AFSD) additive manufacturing processes were employed for the manufacturing of a metastable high entropy alloy (HEA), Fe40Mn20Co20Cr15Si5 (CS-HEA). A processing window was developed for the LPBF and AFSD processings of CS-HEA. In case of LPBF, formation of solidification related defects such as lack of fusion pores (for energy density ≤ 31.24 J/mm3) and keyhole pores (for energy density ≥ 75 J/mm3) were observed. Variation in processing conditions affected the microstructural evolution of the metastable CS-HEA; correlation between processing conditions and microstructure of the alloy is developed in the current study. The tendency to transform and twin near stress concentration sites provided excellent tensile and fatigue properties of the material despite the presence of defects in the material. Moreover, solid state nature of AFSD process avoids formation of solidification related defects. Defect free builds of CS-HEA using AFSD resulted in higher work hardening in the material. In summary, the multi-processing techniques used for CS-HEA in the present study showcase the capability of the AM process in tailoring the microstructure, i.e., grain size and phase fractions, both of which are extremely critical for the mechanical property enhancement of the alloy.
292

Implications Of Additive Manufacturing Applications For Industrial Design Profession From The Perspective Of Industrial Designers

Alpay, Efe 01 September 2012 (has links) (PDF)
The purpose of this study was to investigate the implications of additive manufacturing on industrial design profession and designers through an explorative study. Through a literature survey, implications of additive manufacturing technologies on industrial designers and industrial design profession were explored. Expanding literature survey with on-line searches, several experimental and commercial application examples of rapid manufacturing of products were identified. These identified examples were then used for a qualitative evaluation on the implications of additive manufacturing for the industrial design profession and designers through semi-structured interviews conducted with seven professional industrial designers having experience with rapid manufacturing in Istanbul Turkey. The research concluded with significant implications of additive manufacturing having the potential to cause paradigm shifts in industrial designer&rsquo / s role, definition of the profession and design process. The conclusions derived include suggestions to exploit the potential brought by these technologies and their applications.
293

Multi-objective process planning method for Mask Projection Stereolithography

Limaye, Ameya Shankar 16 October 2007 (has links)
Mask Projection Stereolithography (MPSLA) is a high resolution manufacturing process that builds parts layer by layer in a photopolymer. In this research, a process planning method to fabricate MPSLA parts with constraints on dimensions, surface finish and build time is formulated. As a part of this dissertation, a MPSLA system is designed and assembled. The irradiance incident on the resin surface when a given bitmap is imaged onto it is modeled as the Irradiance model . This model is used to formulate the Bitmap generation method which generates the bitmap to be imaged onto the resin in order to cure the required layer. Print-through errors occur in multi-layered builds because of radiation penetrating beyond the intended thickness of a layer, causing unwanted curing. In this research, the print through errors are modeled in terms of the process parameters used to build a multi layered part. To this effect, the Transient layer cure model is formulated, that models the curing of a layer as a transient phenomenon, in which, the rate of radiation attenuation changes continuously during exposure. In addition, the effect of diffusion of radicals and oxygen on the cure depth when discrete exposure doses, as opposed to a single continuous exposure dose, are used to cure layers is quantified. The print through model is used to formulate a process planning method to cure multi-layered parts with accurate vertical dimensions. This method is demonstrated by building a test part on the MPSLA system realized as a part of this research. A method to improve the surface finish of down facing surfaces by modulating the exposure supplied at the edges of layers cured is formulated and demonstrated on a test part. The models formulated and validated in this dissertation are used to formulate a process planning method to build MPSLA parts with constraints on dimensions, surface finish and build time. The process planning method is demonstrated by means of a case study.
294

High-gain millimeter-wave antenna design and fabrication using multilayer inkjet printing processes

Tehrani, Bijan K. 08 June 2015 (has links)
The research provided in this thesis focuses on the development of high-gain multilayer millimeter-wave (mm-Wave) antenna structures through additive inkjet printing fabrication processes. This work outlines the printing processes of thick dielectric films for use as printed radio frequency (RF) substrates and provides a proof-of-concept demonstration of the first fully-printed RF structures. Using the outlined processes, demonstrations of high-gain mm-Wave proximity-coupled patch array and Yagi-Uda array antennas are presented, achieving the highest realized gain within the 24.5 GHz ISM band for inkjet-printed antennas in literature.
295

Characterization of quartz lamp emitters for high temperature polymer selective laser sintering (SLS) applications

Kubiak, Steven Thomas 16 February 2015 (has links)
This thesis provides investigation into the interaction between quartz lamp emitters and polyether ether ketone (PEEK) powder. Calculations and experiments concerning the conductivity and emissivity of the powder at various temperatures are performed. The thermal profile of the emitter on a flat powder bed is captured using thermal imaging. The effect of exposing a pile of powder to the emitter and the subsequent thermal gradient through the pile is measured and analyzed. Based on these results, ramifications for the application of these emitters to selective laser sintering (SLS) machines for processing high temperature polymers such as PEEK are discussed. / text
296

A combined computational and experimental study of heterogeneous fracture

Wang, Neng 21 September 2015 (has links)
Material property heterogeneity is present ubiquitously in various natural and man-made materials, such as bones, seashells, rocks, concrete, composites, and functionally graded materials. A fundamental understanding of the structure-property relationships in these material systems is crucial for the development of advanced materials with extreme properties. Well-developed homogenization schemes exist to establish such relationships in elasticity, electrostatics, magnetism, and other time- or history-independent material properties. Nevertheless, one’s understanding of the effective fracture properties of heterogeneous media is remarkably limited. The challenge here is that heterogeneous fracture, as a history-dependent process, involves complex interaction and negotiation of a discontinuity front with local heterogeneities. The determination of effective fracture properties necessitates a critical interrogation of this evolutionary process in detail. In this work, a combined experimental and modeling effort is made to examine and control fracture mechanisms in heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough biological materials, is selected as a model material. In the computational part of this work, finite element analysis with cohesive zone modeling is used to model crack propagation and arrest in the laminated direction. A crack-tip-opening controlled algorithm is implemented to overcome the instability problems associated with inherently unstable crack growth. Computational results indicate that the mismatch of elastic modulus is an important factor in determining the fracture behaviors of the heterogeneous model material. Significant enhancement in the material’s effective fracture toughness can be achieved with appropriate modulus mismatch. Systematic parametric studies are also performed to investigate the effects of various material and geometrical parameters, including modulus mismatch ratio, phase volume fractions, T-stress, and cohesive zone size. Concurrently, a novel stereolithography-based additive manufacturing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of each specimen is performed using the tapered double-cantilever beam (TDCB) test method. With optimized material and geometrical parameters, heterogeneous TDCB specimens are found to exhibit higher fracture toughness than their homogenous counterparts, which is in good agreement with the computational predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of ultra-tough materials through patterned heterogeneities.
297

Topology optimization for additive manufacturing of customized meso-structures using homogenization and parametric smoothing functions

Sundararajan, Vikram Gopalakrishnan 16 February 2011 (has links)
Topology optimization tools are useful for distributing material in a geometric domain to match targets for mass, displacement, structural stiffness, and other characteristics as closely as possible. Topology optimization tools are especially applicable to additive manufacturing applications, which provide nearly unlimited freedom for customizing the internal and external architecture of a part. Existing topology optimization tools, however, do not take full advantage of the capabilities of additive manufacturing. Prominent tools use micro- or meso-scale voids or artificial materials to parameterize the topology optimization problem, but they use filters, penalization functions, and other schemes to force convergence to regions of fully dense (solid) material and fully void (open) space in the final structure as a means of accommodating conventional manufacturing processes. Since additive manufacturing processes are capable of fabricating intermediate densities (e.g., via porous mesostructures), significant performance advantages could be achieved by preserving and exploiting those features during the topology optimization process. Towards this goal, a topology optimization tool has been created by combining homogenization with parametric smoothing functions. Rectangular mesoscale voids are used to represent material topology. Homogenization is used to analyze its properties. B-spline based parametric smoothing functions are used to control the size of the voids throughout the design domain, thereby smoothing the topology and reducing the number of required design variables relative to homogenization-based approaches. Resulting designs are fabricated with selective laser sintering technology, and their geometric and elastic properties are evaluated experimentally. / text
298

Sustainability and thermal aspects of polymer based laser sintering

Sreenivasan, Rameshwar 16 February 2011 (has links)
Additive Manufacturing (AM) processes which include Selective Laser Sintering (SLS) have experienced tremendous growth and development since their introduction over 20 years ago. It becomes highly important at this stage to evaluate the sustainability of the process and refine it to reduce energy and material consumption. In this study, a sustainability analysis was performed on the SLS process with Nylon-12 using the Environmental and Resource Management Data (ERMD) known as Eco-Indicators. The energy perspective alone was considered and a Total Energy Indicator (TEI) value was calculated using various parameters to quantify process sustainability: process productivity, energy consumption rate, etc. Precise thermal control of selective laser sintering (SLS) is desirable for improving geometric accuracy, mechanical properties, and surface finish of parts produced. An experimental setup to monitor the temperature distribution was designed using Resistance Temperature Detectors (RTD) as a part of this study. Discrepancies in temperature profiles were investigated and recommendations were made to improve thermal characteristics of the SLS process. / text
299

Interface dynamics in inkjet deposition

Zhou, Wenchao 22 May 2014 (has links)
Ink-jet deposition is an emerging technology that provides a more efficient, economic, scalable method of manufacturing than other traditional additive techniques by laying down droplets layer by layer to build up 3-D objects. The focus of this thesis is to investigate the material interface evolution during the droplet deposition process, which holds the key to understanding the material joining process. Droplet deposition is a complicated process and can be broken down into droplet impingement dynamics and droplet hardening. This research focuses on the study of the interface dynamics of droplet impingement. In order to study the interface dynamics, a novel metric is developed to quantify the evolving geometry of the droplet interface in both 2-D and 3-D for single and multiple droplets respectively, by measuring the similarity between the evolving droplet geometry and a desired shape. With the developed shape metric, the underlying physics of the interface evolution for single droplet impingement are examined with simulations using an experimentally validated numerical model. Results show that the Weber number determines the best achievable shape and its timing during the droplet impingement when Ohnesorge number is smaller than 1, while the Reynolds number is the determining factor when Ohnesorge number is larger than 1. A regime map is constructed with the results and an empirical splash criterion to guide the choice of process parameters for given fluid properties in order to achieve the best shape without splash for single droplet impingement. In order to study the interface dynamics for multiple droplet interaction, which is computationally prohibitive for commercial software packages, an efficient numerical model is developed based on the Lattice Boltzmann (LB) method. A new LB formulation equivalent to the phase-field model is developed with consistent boundary conditions through a multiscale analysis. The numerical model is validated by comparing its simulation results with that of commercial software COMSOL and experimental data. Results show our LB model not only has significant improvement of computational speed over COMSOL but is also more accurate. Finally, the developed numerical solver is used to study the interface evolution of multiple droplet interaction with the aid of the 3-D shape metric proposed before. Simulations are performed on a wide range of impingement conditions for two-droplet, a-line-of-droplet, and an-array-of-droplet interactions. The underlying physics of the interface coalescence and breakup coupling with the impingement dynamics are examined. For line-droplet interaction, the strategy for achieving the equilibrium shape in the shortest time is studied. An important issue is discovered for array-droplet interaction, which is the air bubble formation during the droplet interaction. The mechanism for the air bubble formation is investigated and the strategy to avoid this undesirable effect is also suggested. This thesis has largely reduced the gap between basic science of studying droplet impingement dynamics and engineering application in inkjet deposition and provided preliminary insights on the material joining process for additive manufacturing.
300

Integrated Control of Solidification Microstructure and Melt Pool Dimensions In Additive Manufacturing Of Ti - 6Al - 4V

Gockel, Joy E. 01 May 2014 (has links)
Additive manufacturing (AM) offers reduced material waste and energy usage, as well as an increase in precision. Direct metal AM is used not only for prototyping, but to produce final production parts in the aerospace, medical, automotive and other industries. Process mapping is an approach that represents process outcomes in terms of process input variables. Solidification microstructure process maps are developed for single bead and thin wall deposits of Ti-6Al-4V via an electron beam wire feed and electron beam powder bed AM process. Process variable combinations yielding constant beta grain size and morphology are identified. Comparison with the process maps for melt pool geometry shows that by maintaining a constant melt pool cross sectional area, a constant grain size will also be achieved. Additionally, the grain morphology boundaries are similar to curves of constant melt pool aspect ratio. Experimental results are presented to support the numerical predictions and identify a proportional size scaling between beta grain widths and melt pool widths. Results demonstrate that in situ, indirect control of solidification microstructure is possible through direct melt pool dimension control. The ability to control solidification microstructure can greatly accelerate AM process qualification potentially allow for tailored microstructure to the desired application.

Page generated in 0.0809 seconds