• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • Tagged with
  • 14
  • 13
  • 13
  • 8
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Parametrization of relative humidity- and wavelength-dependent optical properties of mixed Saharan dust and marine aerosol

Schladitz, Alexander 01 July 2011 (has links)
Aerosol particles interact with sunlight through scattering and absorption and have therefore a direct radiative effect. Hygroscopic aerosol particles take up water and are able to grow in size below 100% relative humidity, which involves the change of optical properties and the direct radiative effect. The change of aerosol optical properties for aerosol mixtures under humidification is presently not well understood, especially for the largest particle sources worldwide. The present PhD-thesis quantifies wavelength- and humidity-dependent aerosol optical properties for a mixture of Saharan mineral dust and marine aerosol. For quantification, an aerosol model was developed, which based on in-situ measurements of microphysical and optical properties at Cape Verde. With this model, aerosol optical properties were calculated from the dry state up to 90% relative humidity. To validate the model, a measure of the total extenuated light from particles under ambient conditions was used. Finally, the humidity dependence of aerosol optical properties for marine aerosol, Saharan dust aerosol, and a mixture of both species was described by two empirical equations. With the wavelength of the incident visible solar radiation, relative humidity, and dry dust volume fraction, the humidity dependence of optical properties can be calculated from tabulated values. To calculate radiative effects, aerosol optical properties were used as input parameters for global circulation models including radiative transfer. Due to the complexity of aerosol related processes, they have been treated implicitly, meaning in parameterized form. For modelling purposes, the present PhD-thesis provides a solution to include humidity effects of aerosol optical properties. / Aerosolpartikel wechselwirken durch Streu- und Absorptionsprozesse mit der einfallenden Sonnenstrahlung und haben somit einen direkten Strahlungseffekt. Bei relativen Feuchten bis 100% können Aerosolpartikel aufquellen und somit ihre Größe ändern. Im Zuge des Aufquellens, ändern sich die optischen Eigenschaften und somit auch der direkte Strahlungseffekt der Aerosolpartikel. Speziell für Mischungen von verschiedenen Aerosolspezies ist die Änderung der optischen Eigenschaften des Aerosols durch Feuchte Einfuss noch nicht ausreichend verstanden. Gegenstand der vorliegenden Arbeit ist daher die Quantifizierung der wellenlängen- und feuchteabhängigen optischen Eigenschaften einer Mischung von Saharastaub- und marinen Aerosol. Die zur Quantifizierung notwendigen Daten wurden im Rahmen einer Feldmessung von mikrophysikalischen- und optischen Aerosol-Eigenschaften auf den Kapverdischen Inseln gesammelt. Auf Grundlage dieser Messungen wurde ein Aerosol-Modell entwickelt. Dieses Modell wurde daraufhin verwendet, um Berechnungen von optischen Aerosol-Eigenschaften bei relativen Feuchten bis 90% durchzuführen. Eine Messung der Lichtschwächung durch Aerosolpartikel unter Umgebungsbedingungen wurde verwandt, um das Modell bei Umgebungsfeuchten zu validieren. Die Wellenlängen- und Feuchteabhängigkeit der optischen Eigenschaften des Aerosols wurde parametrisiert und konnte anhand von zwei Parametergleichungen bestimmt werden. Unter Benutzung von tabellierten Werten und der Wellenlänge des einfallenden sichtbaren Sonnenlichtes, der relativen Feuchte, sowie der Staubvolumenfraktion, kann die Feuchteabhängigkeit von wichtigen Aerosol-optischen Eigenschaften für Saharastaub, marinen Aerosol und einer Mischung aus beiden Komponenten bestimmt werden. Globale Zirkulationsmodelle, die auch eine Berechnung von Strahlungseffekten durch Aerosolpartikel beinhalten, nutzen Aerosol-optische Eigenschaften als Eingabeparameter. Durch zunehmende Komplexitiät zur Beschreibung von Wechselwirkungen in der Atmosphäre, sind einfache Parametrisierungen unabdingbar. Die vorliegende Arbeit liefert daher einen wichtigen Beitrag für die Modellierung von Strahlungseffekten durch Aerosolpartikel und somit zum Verständnis des Strahlungshaushaltes der Erde.
12

Analyse von Kunststoffadditiven mittels Laserablation gekoppelt mit induktiv gekoppelter Plasma Massenspektrometrie

Börno, Fabian 29 November 2016 (has links)
Die Laserablation gekoppelt mit der Massenspektrometrie mit induktiv gekoppeltem Plasma ist eine vielversprechende direkte Feststofftechnik, die sich jedoch bei der Analyse von Kunststoffen wegen des Mangels an matrixangepassten zertifizierten Referenzmaterialien nicht durchsetzen konnte. Vorherige Arbeiten belegen polymerabhängige Abtragsraten. Das oft als interner Standard verwendete Intensitätssignal des Kohlenstoffisotopes 13C zur Korrektur dieser Unterschiede wird in der Literatur kritisch diskutiert. In dieser Arbeit als ein Teil des BMBF-geförderten MaxLaP-Projektes wurden matrixangepasste Standards auf Polyethylen- und Acrylnitril-Butadien-Styrolbasis entwickelt. In diese Standards wurden Br, Cd, Cu, Cr, Fe, Sb in organischer und anorganischer Form ihrer Verbindungen mittels Extrusion eingearbeitet. Die quantitative Zusammensetzung der Materialien wurde mittels ETV-ICP-OES, DC-arc-OES, RFA und ICP-MS nach Mikrowellendruckaufschluss überprüft. Die Verfahren wurden für die Kunststoffanalyse optimiert. Die mikroskopische Homogenität der Einarbeitung wurde mittels µ-SYRFA und LA-ICP-MS untersucht. Zur Untersuchung der Matrixeffekte während der LA-ICP-MS und der matrixunabhängigen Kalibrierung für Kunststoffe wurden der Einfluss der chemischen Verbindung der Additive, die Größe, der bei der Laserablation gebildeten Partikel und die Art des Kunststoffes auf die Laserablation analysiert. Die Korrektur des verschiedenen Materialabtrages über die Verwendung des 13C-Signals konnte für 21 verschiedene Kunststoffe erfolgreich durchgeführt werden. Allerdings zeigen die zugesetzten Additive ein nicht identisches Verhalten hinsichtlich Transport und Ionisierung. Weitere Ergebnisse belegen eine Anreicherung der Additive in verschiedenen Partikelgrößen sowie eine deutlich unterschiedliche Partikelbildung bei Ablationen von verschiedenen polymeren Matrices, was zu einer verstärkten Elementfraktionierung bei einer nicht matrixangepassten Kalibrierung führt. / Laser ablation coupled to a mass spectrometer with inductively coupled plasma (LA-ICP-MS) is a promising direct solid sampling technique. Due to the lack of matrix matched standard materials laser ablation is not well established in polymer analysis. In a recent study a polymer dependent interaction with the laser beam was reported, which resulted in a polymer depending ablation rate. The usage of the carbon-13-signal intensity as internal standard to correct these differences as commonly applied has been critically discussed in literature. In this work as part of a BMBF-supported MaxLaP-project (matrix effects during laser ablation of polymers) matrix matched standards based on polyethylene and acrylonitrile butadiene styrene were developed. In these materials Br, Cd, Cu, Cr, Fe and Sb were incorporated as organic and inorganic compounds through extrusion. Quantitative composition of the materials was determined by ETV-ICP-OES, DC-arc-OES, XRF and ICP-MS after high pressure microwave digestion. Analytical methods were optimized for trace analysis in plastic matrices. Microscopic homogeneity was examined by µ-SyXRF as well as LA-ICP-MS. In order to investigate the matrix effects and to determine the possibility of a matrix independent calibration for plastic materials, the influence of the chemical form of the additives, size of the formed particles and the type of the plastic on the LA-ICP-MS measurements were analyzed. The correction of the material uptake by the carbon-13-signal was successfully applied for 21 different types of plastic. However, different incorporated additives show a different transport and ionization behavior. Furthermore, our results confirm a different enrichment of the additives depending on particle size and a significantly different particle formation for different types of plastic, which leads to a more pronounced elemental fractionation by not using a matrix matched calibration.
13

An optical particle counter for the regular application onboard a passenger aircraft: instrument modification, characterization and results from the first year of operation

Weigelt, Andreas 28 May 2015 (has links)
To understand the contribution of aerosol particles to radiative forcing and heterogeneous chemical processes in the upper troposphere and lowermost stratosphere (UT/LMS), the knowledge of the particle size distribution is mandatory. Unfortunately, measurements in the UT/LMS are costly. Research aircrafts are expensive and thus their application is limited in time and space. Satellite remote sensing measurements provide a good temporal and spatial (horizontal) coverage, but only a limited vertical resolution and currently cannot resolve the particle size distribution. Therefore, within this thesis an optical particle counter (OPC) unit was modified for the application onboard a passenger long-haul aircraft within the CARIBIC project (www.caribic-atmospheric.com). The CARIBIC OPC unit provides regular and cost-efficient particle size distribution measurements of accumulation mode particles in the UT/LMS. In April 2010, the new OPC unit was installed for the first time onboard the Lufthansa Airbus A340 600 (D-AIHE) for the measurement of the volcanic ash cloud from the Eyjafjallajökull eruption (April to May 2010). Since June 2010 the OPC unit measures on usually four intercontinental flights per month the UT/LMS particle size distribution in the particle size range 125 to 1300 nm particle diameter. As the data acquisition stores the scattering raw signal and all housekeeping data as well, during the post flight data analysis the temporal- and size channel resolution can be flexible set. Within this work the data were analyzed with 32 size channels and 300 seconds. As aircraft-borne measurements are always time-consuming, the development of the OPC unit and the analysis routine, as well as its characterization and certification took more than two thirds of the total working time of this thesis. Therefore, the analysis of the data is limited to the first year of regular measurements until May 2011. Nevertheless, this dataset is sufficient to demonstrate the scientific relevance of these measurements. To validate the OPC data, a comparison to particle size distributions measured from board research aircraft was carried out. The analysis of the volcanic ash flights in April and May 2010 showed strongly enhanced particle mass concentrations inside the plumes and agreed in some regions very well to the particle mass concentration predicted by a dispersion model. A further case study shows the occurrence of a surprising large (1000 km) and high concentrated pollution plume over eastern Asia close to Osaka (Japan). Inside the plume the highest particle number- and mass concentrations measured with the OPC unit in the analysis period were observed (except volcanic ash flights). A detailed analysis of the in parallel measured trace gasses as well as meteorological- and LIDAR data showed, the observed plume originate from biomass burning and industrial emissions in eastern China. A third case study gives a first attempt of a mass closure/validation between the particle masses derived by the CARIBIC OPC unit and the CARIBIC impactor particle samples. First statistical analyses to the vertical, meridional, and seasonal variation of the accumulation mode particle size distribution and therefrom derived parameter indicate a stratospheric vertical increasing gradient for the particle number- and mass concentration. In general in the mid-latitude LMS the concentration of accumulation mode particles was found to be on average 120% higher than in the mid-latitude UT. The mid-latitude LMS particle size distribution shows a seasonal variation with on average 120% higher concentrations during spring compared to fall. This results can be explained with general dynamics in the stratosphere (Brewer-Dobson Circulation) and in the tropopause region (stratosphere-troposphere-exchange, STE). An anti-correlation of gaseous mercury to the stratospheric particle surface area concentration (R²=0.97) indicates that most likely stratospheric aerosol particles do act as a sink for gaseous mercury. Finally, two comparisons of the OPC data to data from satellite remote sensing and a global aerosol model underline the OPC potential and the benefits of creating an in situ measured reference dataset. / Um die Rolle von Aerosolpartikeln beim Strahlungsantrieb und der heterogenen chemischen Prozessen in der oberen Troposphäre und untersten Stratosphäre (OT/US) verstehen zu können, ist es unabdingbar die Partikelgrößenverteilung zu kennen. Messungen der Partikelgrößenverteilung in dieser Region sind allerdings aufwendig. Der Einsatz von Forschungsflugzeugen ist teuer und deshalb zeitlich und räumlich nur begrenzt. Satellitenmessungen bieten zwar eine gute zeitliche und räumliche (horizontal) Abdeckung, aber nur eine begrenzte vertikale Auflösung. Weiterhin können bisherige Satellitenmessungen die Partikelgrößenverteilung nicht auflösen. Im Rahmen dieser Arbeit wurde deshalb ein optischer Partikelzähler (OPC) Messeinschub für den Einsatz an Bord eines Langstrecken-Passagierflugzeugs aufgebaut (CARIBIC Projekt, www.caribic-atmospheric.com). Mit diesem Messeinschub kann regelmäßig und kosteneffizient die Partikelgrößenverteilung des Akkumulationsmodes in der OT/US gemessen werden. Im April 2010 wurde der neue OPC Einschub erstmals an Bord des Lufthansa Airbus A340-600 (D-AIHE) installiert um die Vulkanasche der Eyjafjallajökull Eruption (April bis Mai 2010) zu messen. Seit Juni 2010 misst der OPC Einschub auf durchschnittlich vier Interkontinentalflügen pro Monat die Partikelgrößenverteilung der OT/US im Größenbereich zwischen 125 und 1300 nm Partikeldurchmesser. Während des Fluges speichert die Datenerfassung alle Rohsignale ab und ermöglicht dadurch eine nutzerspezifische Datenauswertung nach dem Flug (z. B. Anzahl der Größenkanäle oder Zeitauflösung). Im Rahmen dieser Arbeit wurden die Daten mit 32 Größenkanälen und 300 Sekunden analysiert. Da fluggetragene Messungen immer sehr aufwendig sind, beanspruchte die Entwicklung des OPC Einschubs und des Analysealgorithmus, sowie die Charakterisierung und Zertifizierung mehr als zwei Drittel der Gesamtarbeitszeit dieser Arbeit. Daher ist die Analyse der Messdaten auf das erste Jahr der regulären Messungen bis Mai 2011 beschränkt. Dennoch ist dieser Datensatz geeignet um die wissenschaftliche Relevanz dieser Messungen zu demonstrieren. Um die OPC-Daten zu validieren, wurde ein Vergleich mit bisherigen OPC Messungen von Bord Forschungsflugzeugen durchgeführt. Die Analyse der Vulkanascheflüge im April und Mai 2010 zeigte in der Abluftfahne stark erhöhte Partikelmassekonzentrationen, welche in einigen Vergleichsregionen sehr gut mit der Vorhersage eines Disperionsmodells übereinstimmten. Eine weitere Fallstudie zeigt das Auftreten einer überraschend großen (1000 km) und hoch konzentrierten Abluftfahne über Ostasien nahe Osaka (Japan). In der Abluftfahne wurde die im Analysezeitraum höchste mit dem CARIBIC OPC gemessene Partikelanzahl- und Massenkonzentration beobachtet (ausgenommen Vulkanascheflüge). Eine detaillierte Analyse der parallel gemessenen Spurengase, sowie meteorologischer Daten und LIDAR Profile zeigte, dass die beobachtete Abluftfahne eine Mischung aus Biomasseverbrennungs- und Industrieabgasen aus Ost-China war. Eine dritte Fallstudie stellt einen ersten Versuch einer Massenschließung/Validierung zwischen der aus den CARIBIC OPC-Daten abgeleiteten Partikelmasse und der Partikelmasse aus CARIBIC Impaktorproben dar. Erste statistische Analysen zur vertikalen, meridionalen und saisonalen Variabilität der Partikelgrößenverteilung im Akkumulationsmode und daraus abgeleiteten Parametern zeigen einen vertikal ansteigenden Gradienten für die Partikelanzahl- und Massenkonzentration. Generell war in der US der mittleren Breiten die Konzentration von Akkumulationsmode Partikeln im Mittel um 120% höher als in der OT der mittleren Breiten. Weiterhin wurde in der US der mittleren Breiten eine jahreszeitliche Schwankung gefunden. Im Frühling war die mit dem OPC gemessene Partikelkonzentrationen im Mittel um 120% höher als im Herbst. Diese Befunde lassen sich mit der atmosphärischen Dynamik in der Stratosphäre (Brewer-Dobson Zirkulation) und in der Tropopausenregion (Stratosphäre-Troposphäre-Austauschprozesse) erklären. Eine gefundene negative Korrelation von gasförmigen Quecksilber mit der stratosphärischen Partikeloberflächenkonzentration (R²=0.97) ist ein starker Indikator dafür, dass in der US Aerosolpartikel eine Senke für gasförmiges Quecksilber darstellen. Zum Abschluss unterstreichen zwei Vergleiche der OPC-Daten mit Satellitenmessungen und Ergebnissen eines globalen Aerosolmodels das Potential und den Nutzen der CARIBIC OPC Daten als in-situ gemessenen Referenzdatensatz.
14

Multivariate Untersuchungen in Gasphasenprozessen und Aerosolen mittels Raman-Spektroskopie

Bahr, Leo Alexander 21 September 2021 (has links)
Für Entwurf, Modellierung sowie Überwachung von Gasphasenprozessen sind fun-dierte Kenntnisse über elementare Zustandsgrößen wie Temperatur oder Spezieskon-zentration unerlässlich. Obwohl bereits heute eine breite Palette an optischen, nicht-invasiven Online-Messtechniken zu Verfügung steht, ist deren Einsatz noch immer auf wenige Anwendungsfelder beschränkt. Die Gründe dafür liegen im oft hohen ex-perimentellen Aufwand oder in anderen Nachteilen wie der Notwendigkeit zum Einsatz von Tracern oder der Kalibrierung über zusätzliche Referenzen. Um diese Nachteile zu umgehen, wurde im Rahmen dieser Arbeit ein mobiles, faserbasiertes Sensorsystem, basierend auf der spontanen Raman-Spektroskopie entwickelt. Die Technik verwendet durchstimmbare NIR-Dauerstrich-Laser-Anregung, Signalerfassung in rückstreuender Geometrie (Punktmessung) und erfordert weder Probennahme, noch Tracer innerhalb der Strömung oder Kalibrierschritte am zu untersuchenden Prozess. Die Methode ermöglicht die simultane Bestimmung von Gastemperaturen und Spezieskonzentrationen sowie im Falle von Aerosolen die Bestimmung der Partikelspezies und der Anteile ihrer polymorphen Kristallstrukturen. Die Datenauswertung basiert auf der Rekonstruktion der gemessenen Spektren anhand simulierter Modellspektren durch Least-Square-Algorithmen. Herkömmliche Ansätze liefern lediglich Parameter, die das Residuum zwischen Simulation und Messsignal minimieren. Unsicherheiten der Messgrößen sind daraus nicht ermittelbar und werden deshalb konventionell durch Wiederholung der Messung bestimmt. Mit Hilfe der hier eingesetzten Bayes'schen Statistik lassen sich die entsprechenden Unsicherheiten direkt bestimmen. Darüber hinaus ermöglicht der Ansatz das Einbeziehen von Vorwissen zur Verbesserung der Robustheit und Genauigkeit der Auswertung. Die Performance des Sensorsystems wurde durch Einsätze an verschiedenen Gasphasenprozessen getestet und evaluiert. Dazu gehören Test-Aerosole, ein TiO2-Nanopartikelsyntheseprozess sowie eine laminare, rußarme Flamme. Ein leicht modifiziertes Sensorsystem (VIS-Anregung) wurde an einem Vergasungsreaktor eingesetzt. Generell konnte eine hohe Qualität der ermittelten Messgrößen festgestellt werden. So sind deren Unsicherheiten mit denen deutlich komplexerer Messtechniken vergleichbar, stellenweise sogar geringer. Die mittlere Unsicherheit der Gastemperaturen innerhalb der Flamme betrug nur 1,6 %. Somit ermöglicht der vorgestellte Sensor bei geringem experimentellen Aufwand die Bestimmung wertvoller Prozessdaten und stellt so potentiell die Basis für eine breitere Anwendung optischer Prozessmesstechnik dar. / For the design, modelling and monitoring of gas-phase processes a profound knowledge of elementary state variables such as temperature or species concentration is essential. Although a wide range of optical, non-invasive online measurement techniques is already available today, their use is still limited to a few fields of application. The reasons for this are the regularly high experimental effort or other disadvantages such as the necessity to use tracers or to execute calibration via additional references. In order to avoid these disadvantages, a mobile, fiber-based sensor system based on spontaneous Raman spectroscopy was developed within the scope of this work. The technique uses tunable NIR continuous-wave laser excitation, signal acquisition in backscattering geometry (point measurement) and requires neither sampling, tracers within the flow nor calibration steps at the process under investigation. The method allows the simultaneous determination of gas temperatures and species concentrations and, in the case of aerosols, the determination of the particle species and their polymorphic crystal structures. The data evaluation is based on the reconstruction of the measured spectra using simulated model spectra through least square algorithms. Conventional approaches only provide parameters that minimize the residual between simulation and measurement signal. Uncertainties of the measured variables cannot be determined from these parameters and are, therefore, determined conventionally by repeating the measurement. With the help of the Bayesian statistics used here, the corresponding uncertainties can be determined directly. Furthermore, the approach allows the inclusion of prior knowledge to improve the robustness and accuracy of the evaluation. The performance of the sensor system was tested and evaluated by using it in different gas phase processes. These include test aerosols, a TiO2 nanoparticle synthesis process and a laminar weakly sooting flame. A slightly modified system (VIS excitation) was used with a similar operation strategy at a gasification reactor. In general, a high quality of the measured variables could be determined. Their uncertainties are comparable with those of much more complex measuring techniques, in some cases even lower. The mean uncertainty of the gas temperatures within the flame was only 1.6 %. Thus, the presented sensor enables the determination of valuable process data with low experimental effort and can potentially be the basis for a broader application of optical process measurement technology.

Page generated in 0.0608 seconds