• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 336
  • 54
  • 41
  • 22
  • 22
  • 22
  • 16
  • 13
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 680
  • 149
  • 113
  • 81
  • 77
  • 65
  • 64
  • 52
  • 51
  • 45
  • 45
  • 41
  • 40
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Word of mouth vs. expert reviews : compared using need for cognition and social media affinity

Lopez, William Jose 28 July 2014 (has links)
We live in a world where social media allows everyone to have a voice regardless of their expertise on any subject. With so many anonymous voices giving their opinions are the expert reviews of film critics no longer as useful? Some may believe there is a disconnect between what critics like and what people like. With this in mind, this research puts the usefulness of expert movie reviews and word of mouth against each other as can be seen through the need for cognition scale and social media affinity scale. / text
192

Rational and combinatorial protein engineering for vaccine delivery and drug targeting

Wikman, Maria January 2005 (has links)
<p>This thesis describes recombinant proteins that have been generated by rational and combinatorial protein engineering strategies for use in subunit vaccine delivery and tumor targeting.</p><p>In a first series of studies, recombinant methods for incorporating immunogens into an adjuvant formulation, e.g. immunostimulating complexes (iscoms), were evaluated. Protein immunogens, which are not typically immunogenic in themselves, are normally administered with an adjuvant to improve their immunogenicity. To accomplish iscom incorporation of a <i>Toxoplasma gondii</i> surface antigen through hydrophobic interaction, lipids were added either <i>in vivo</i> via <i>E. coli</i> expression, or <i>in vitro</i> via interaction of an introduced hexahistidyl (His6) peptide and a chelating lipid. The possibility of exploiting the strong interaction between biotin and streptavidin was also explored, in order to couple a<i> Neospora caninum</i> surface antigen to iscom matrix, i.e. iscom particles without any antigen. Subsequent analyses confirmed that the immunogens were successfully incorporated into iscoms by the investigated strategies. In addition, immunization of mice with the recombinant Neospora antigen NcSRS2, associated with iscoms through the biotin-streptavidin interaction, induced specific antibodies to native NcSRS2 and reduced clinical symptoms following challenge infection. The systems described in this thesis might offer convenient and efficient methods for incorporating recombinant immunogens into adjuvant formulations that might be considered for the generation of future recombinant subunit vaccines.</p><p>In a second series of studies, Affibody® (affibody) ligands directed to the extracellular domain of human epidermal growth factor receptor 2 (HER2/neu), which is known to be overexpressed in ∼ 20-30% of breast cancers, were isolated by phage display <i>in vitro</i> selection from a combinatorial protein library based on the 58 amino acid residue staphylococcal protein A-derived Z domain. Biosensor analyses demonstrated that one of the variants from the phage selection, denoted His<sub>6</sub>-Z<sub>HER2/neu:4</sub>, selectively bound with nanomolar affinity (KD ≈ 50 nM) to the extracellular domain of HER2/neu (HER2-ECD) at a different site than the monoclonal antibody trastuzumab. In order to exploit avidity effects, a bivalent affibody ligand was constructed by head-to-tail dimerization, resulting in a 15.6 kDa affibody ligand, termed His<sub>6</sub>-(Z<sub>HER2/neu:4</sub>)<sub>2</sub>, that was shown to have an improved apparent affinity to HER2-ECD (KD ≈ 3 nM) compared to the monovalent affibody. Moreover, radiolabeled monovalent and bivalent affibody ligands showed specific binding in vitro to native HER2/neu molecules expressed in human cancer cells. Biodistribution studies in mice carrying SKOV-3 xenografted tumors revealed that significant amounts of radioactivity were specifically targeted to the tumors <i>in vivo</i>, and the tumors could easily be visualized with a gamma camera. These results suggest that affibody ligands would be interesting candidates for specific tumor targeting in clinical applications, such as <i>in vivo</i> imaging and radiotherapy.</p>
193

A surface plasmon resonance assay to determine the effect of influenza neuraminidase mutations on its affinity with antiviral drugs.

Somasundaram, Balaji January 2013 (has links)
The outbreak of pandemic influenza and its ability to spread rapidly makes it a severe threat to public health. Antiviral drugs such as oseltamivir (Roche’s Tamiflu™) and zanamivir (GlaxoSmithKline’s Relenza™) are neuraminidase (NA) inhibitors (NI), which bind more tightly to NA than its natural substrate, sialic acid. However, the virus can acquire resistance to antiviral drugs by developing single point mutations (such as H274Y) in the target protein. Thus in some cases the drugs may not be as effective as expected. The high level of inconsistency exhibited by fluorometric assays and the short half-life of the chemiluminescent assay for monitoring drug resistance lead to the need for a simple, label-free, reliable assay. To address this problem, this work focused on three main objectives: 1) to determine the binding affinities of two common anti-viral drugs (oseltamivir and zanamivir) against the influenza NA wild type and drug resistant mutants using bioinformatics software Schrodinger Suite™ 2010. 2) To develop a reliable label-free, real-time, surface plasmon resonance (SPR) assay to measure the binding affinity between influenza viral coat protein neuraminidase (wild type and mutant) and anti-viral drugs. 3) To develop an SPR inhibition assay to quantitatively compare the interactions of sialic acid, zanamivir and oseltamivir with the viral coat protein neuraminidase (wild type and mutant). The entire docking process was carried out using Schrödinger Suite™ 2010. The 2009 pandemic H1N1 neuraminidase (PDB: 3NSS) was used throughout the docking studies as the wild type structure. Five mutants (H274Y, N294S, H274N, A346N and I222V) and three ligands (sialic acid, oseltamivir and zanamivir) were built using the maestro module. The grid-based ligand docking with energetics (GLIDE) module and induced fit docking (IFD) module were used for docking studies. The binding affinities, Gibbs free energy change (∆G) and molecular mechanics-generalized born energy/ solvent accessible area (MM-GB/SA) values for wild-type NA interactions show that both the antiviral drugs studied interact strongly with the wild-type protein. The ∆G values for all antiviral interactions with mutant NA forms were reduced in magnitude, thereby indicating that they are less favourable than interactions with the wild-type protein. A similar trend was observed with MM-GB/SA results. Amongst all of the computed values, MM-GB/SA was the closest to the experimental data. In several cases, the interactions between the anti-viral drugs and NA mutants were markedly less favourable than those between sialic acid and the same mutants, indicating that these mutations could confer anti-viral resistance. Influenza NA wild-type and H274Y mutant were expressed in baculovirus expression system (BVES) in insect cells. The expressed proteins were partially purified using the standard purification techniques of anion exchange and size exclusion chromatography (SEC). A fluorometric activity assay was performed on the recombinant proteins. Both the wild type and the mutant showed similar level of activities. In addition, the recombinant NAs were used in an inhibition assay. Oseltamivir was found to be sensitive to wild type protein (IC50 = 0.59 nM) and resistant to the H274Y mutant protein (IC50 = 349.43 nM). On the other hand, zanamivir was sensitive to both wild type (IC50 = 0.26 nM) and the H274Y mutant (IC50 = 0.44 nM). This indicated that zanamivir was a more potent inhibitor than oseltamivir. These findings were in good agreement with the literature. An SPR assay for accurate monitoring of influenza antiviral drug resistance was developed. A spacer molecule (1, 6- hexanediamine) was site-specifically tethered to the inert 7-hydroxyl group of zanamivir. The tethered zanamivir was immobilized onto an SPR GLC chip to obtain a final immobilization response of 431 response units (RU). The reference subtracted binding responses obtained for NA wild-type and H274Y mutant were analysed using the ProteOn Manager™ Software tools. The SPR curves were fitted to a simple Langmuir 1:1 model with drift to obtain association rate constant (ka) and dissociation rate constants (kd). The relative binding values obtained from literature and the current SPR assay (1.9 and 1.7 respectively) suggested that the current SPR assay yielded similar results to the existing labelled enzymatic assay. In addition, an SPR inhibition assay was developed. The calculated IC50-spr values were compared and it was observed that oseltamivir was sensitive to wild type protein (IC50-spr = 7.7 nM) and resistant to the H274Y mutant protein (IC50-spr = 256 nM). On the other hand, zanamivir was sensitive to both wild type (IC50-spr = 2.16 nM) and the H274Y mutant (IC50-spr = 2.4 nM). Sialic acid was also found to be sensitive to both wild type (IC50-spr = 5.5 nM) and H274Y mutant (IC50-spr = 3.25 nM). In the cases studied, the viral proteins remained sensitive to sialic acid, consistent with retention of virulence of these mutant strains. It was concluded that zanamivir is a more potent inhibitor than oseltamivir for treating the H274Y mutant. Comparison of the SPR inhibition results with the docking results revealed a similar trend. The wild-type NA and H27Y mutant retained binding affinity for sialic acid and zanamivir. Oseltamivir showed a significant decrease in binding affinity for the H274Y mutant compared with the wild-type. This was because of the disruption of the salt bridge formation within NA that was vital for oseltamivir activity. To my knowledge, this is the first SPR biosensor assay developed to monitor influenza antiviral drug resistance. There is a tremendous scope to extend this study to more mutants and new antiviral drugs. This could pave the way for a reliable SPR biosensor assay to replace low consistency labelled enzymatic assays.
194

Luminescence studies of molecular materials

Miller, Paul Francis January 2000 (has links)
No description available.
195

Biophysical and structural characterisation of protein-peptide interactions

Brown, Peter N. January 2010 (has links)
Proliferating cell nuclear antigen (PCNA) is an essential protein in the cell. It is involved in transcription and many types of DNA repair and replication. Homologues of this protein are found in all orders of life. The high level of conservation and essential nature of PCNA infers that it may be a potential drug target for anti-caner drugs in humans and also a potential anti-parasitic target. X-ray structures of PCNA from Homo sapiens (Hs), Schizosaccharomyces pombe (Sp) and Leishmania major (Lm) are now available and can be used as a template for structure based drug design. In this work PCNA from these three species have been prepared in milligram quantities for biochemical and biophysical studies. The previously unknown structure of LmPCNA has been solved in an uncomplexed form and also complexed with a dodecapeptide to a resolution of 3.0Å. A comparison of PCNA structures and their peptide complexes for the three species identifies structural differences which may be relevant in analysing thermodynamic contributions of binding. All eukaryotic PCNA molecules exist as ring shaped trimers which form around DNA. In this work the oligomeric state of LmPCNA has been determined to be hexameric both in solution and in the crystal. It has also been hypothesised that HsPCNA is hexameric however these would seem to form hexamers in which the trimeric rings associate “back-to-back” while LmPCNA trimers would seem to associate “face-to-face”. The binding affinities for these three PCNAs have been determined with a selection of peptides derived from the Hs p21 protein. This work has shown, using a selection of different techniques including Surface Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC) and Dynamic Scanning Fluorimetry (DSF); that HsPCNA and SpPCNA have similar affinities for a 12mer peptide (Kd of ~1μM) however LmPCNA shows significantly weaker interactions (Kd of ~10μM). This is most likely due to divergence in the sequence and structure of LmPCNA. A systematic investigation by SPR on the effect of peptide linker length on binding has been carried out using a series of synthesised peptides with different lengths of chemical spacer. The series of streptavidin immobilised peptides show that longer spacers are required for the recovery of the PCNA peptide binding affinity. The results presented in this work indicate that a linker length of at least 20Å is required for measurable protein binding activity. This interaction is improved with longer peptide spacers.
196

Systematic analysis of heterochromatin modification readout

Zimmermann, Nadin 15 June 2016 (has links)
No description available.
197

TCR signalling in response to affinity stimulation

Bruger, Annika Målin January 2013 (has links)
T cells are an essential part of the adaptive immune system and protect the body from intracellular infections. The specificity with which αßTCR-bearing T cells recognize cognate antigen presented on MHC molecules is paramount to maintaining the balance between mounting effector functions against pathogens and establishing peripheral tolerance to self. The mechanism by which T cells translate qualitative differences in TCR:pMHC binding to sensitive proximal signalling events which ultimately result in specific Tcell effector responses to infected cells but not to self is mostly unknown. To address how T cell signalling responds to qualitative differences in TCR triggering by pMHC, I established a system of stimulating T cells bearing the 1G4 TCR specifically in vitro with a panel of four NY-ESO-1<sub>156-165</sub> peptide variant MHC tetramers. Single amino acid substitutions to the NY-ESO-1<sub>156-165</sub> peptide conferred a maximum 35-fold difference in the monomeric affinity for the 1G4 TCR. The system allows the highly controlled investigation of very rapid TCR proximal signalling events simultaneously and quantitatively using flow cytometry. Stimulations with pMHC tetramers showed rapid sensitive sequential signalling responses which were able to confer ligand discrimination. Very early signalling events such as CD3ζ phosphorylation showed analogue responses to the different affinity pMHC tetramers. Later signalling events including phospho-ERK showed a distinct on/off switch-like response. The amplitude of the very early analogue signalling responses determined the extent of later digital ERK signals. This indicates that a certain analogue signalling threshold must be passed to result in T cell activation. The thymocyte protein Themis has been shown proximal TCR signalling to modulate thymocyte selection thresholds. Its deletion results in profound defects in positive thymocyte selection. Themis locates to the LAT signalosome of the TCR signalling cascade via Grb2, yet its molecular function is unknown. Employing the system I established, I demonstrate that Themis-k/d cells show increased levels of CD3z-chain phosphorylation, phospho-ERK signalling and signal-induced apoptosis which was independent of the ERK signal. This shows that Themis is a global attenuator of proximal TCR signalling. We are currently investigating possible associations of Themis to proteins phosphastases such as SHP-1 which could attenuate TCR proximal protein tyrosine signalling events.
198

Detection and enrichment of cytochrome P450s using bespoke affinity chromatography and proteomic techniques : development of chemical immobilisation and novel affinity chromatography methods, with subsequent proteomic analysis, for the characterisation of cytochrome P450s important in cancer research

Bateson, Hannah January 2012 (has links)
Introduction: Cellular membrane proteins, such as the cytochrome P450 enzyme superfamily (P450), have important roles in the physiology of the cell. P450s are important in metabolising endogenous molecules, as well as metabolising xenobiotic substances for detoxification and excretion. P450s are also implicated in cancer as they can act to 'negatively' de-activate or 'positively' activate cancer therapeutics. Identifying specific P450s that are highly up-regulated at the tumour site could be used to predict drug response and formulate targeted cancer therapy to help diminish systemic side-effects. Methods: Previous enrichment strategies have been unable to isolate the full complement of the P450 superfamily. To develop enrichment procedures for the P450s, a proteomic strategy was developed so that compounds could be screened for their effectiveness as general P450 probes. A standardised work-flow was created, encompassing affinity chromatography, protein concentration/desalting, followed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and high performance liquid chromatography-mass spectrometry (HPLC-MS). A ketoconazole analogue and a 2-EN analogue, with known P450 inhibition, were immobilised on a solid support for comparison to immobilised histamine. Co-factor removal, competitive elution and DTT cleavage of disulfide bonds of probes were utilised to elute bound proteins. Results/Discussion: Inhibitor-beads bound a large range of proteins, including P450's, of which some were eluted by co-factor removal, some by competitive elution. Specificity of binding was improved by optimising buffer conditions and solid supports, however non-specific binding was not totally eradicated. All human P450s from spiked samples and 18 P450s from more complex mouse liver samples were recovered using one or more ligands.
199

UNCONVENTIONAL SUPERHALOGENS: DESIGN AND APPLICATIONS

Samanta, Devleena 11 May 2012 (has links)
Electron affinity is one of the most important parameters that guide chemical reactivity. Halogens have the highest electron affinities among all elements. A class of molecules called superhalogens has electron affinities even greater than that of Cl, the element with the largest electron affinity (3.62 eV). Traditionally, these are metal-halogen complexes which need one electron to close their electronic shell. Superhalogens have been known to chemistry for the past 30 years and all superhalogens investigated in this period are either based on the 8-electron rule or the 18-electron rule. In this work, we have studied two classes of unconventional superhalogens: borane-based superhalogens designed using the Wade-Mingo’s rule that describes the stability of closo-boranes, and pseudohalogen based superhalogens. In addition, we have shown that superhalogens can be utilized to build hyperhalogens, which have electron affinities exceeding that of the constituent superhalogens, and also to stabilize unusually high oxidation states of metals.
200

AROMATICITY RULES IN THE DEVELOPMENT OF NEGATIVE IONS

Child, Brandon 28 April 2014 (has links)
Organic molecules are known for their stability due to aromaticity. Superhalogens, on the other hand, are highly reactive anions, whose electron affinity is larger than that of chlorine. This thesis, using first principles calculations, explores possible methods for creation of superhalogen aromatic molecules while attempting to also develop a fundamental understanding of the physical properties behind their creation. The first method studied uses anionic cyclopentadienyl and enhances its electron affinity through ligand substitution or ring annulation in combination with core substitutions. The second method studies the possibilities of using benzene, which has a negative electron affinity (EA), as a core to attain similar results. These cases resulted in EAs of 5.59 eV and 5.87 eV respectively, showing that aromaticity rule can be used to create strong anionic organic molecules. These studies will hopefully lead to new advances in the development of organic based technology.

Page generated in 0.0607 seconds