51 |
FamÃlias infinitas de corpos quadrÃticos imaginÃrios / Infinite families of imaginary quadratic fieldsAlexsandro BelÃm da Silva 29 July 2010 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Seja ℓ > 3 um primo Ãmpar. Sejam So, S+, S_ conjuntos finitos mutuamente disjuntos de primos racionais. Para qualquer nÃmero real suficientemente grande X > 0, baseando-nos
em [16], damos neste trabalho, um limite inferior do nÃmero de corpos quadrÃticos imaginÃrios k que satisfazem as seguintes condiÃÃes: o discriminante de k à maior que
-X o nÃmero de classe de k à nÃo divisÃvel por ℓ, todo q â So se ramifica, todo q â S+ se decompÃe e todo q â S_ à inerte em k, respectivamente. / Let ℓ > 3 be an odd prime. Let So, S+, S_ be mutually disjoint finite sets of rational primes. For any suficiently large real number X > 0, basing ourselves on [16], we give this paper a lower bound of the number of imaginary quadratic fields k which satisfy the following conditions: the discriminant of k is greater than -X, the class number ok is not divisible by ℓ, every q â So ramifies, every q â S+ splits and every q â S_ is
inert in k, respectively.
|
52 |
Altura e equidistribuição de pontos algébricos / Height and equidistribution of algebraic pointsSantos, Jefferson Marques 20 June 2017 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-07-05T14:04:12Z
No. of bitstreams: 2
Dissertação - Jefferson Marques Santos - 2017.pdf: 1510253 bytes, checksum: fa6dbf92bac6614d3ce705a47bbe41b8 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-07-10T14:31:22Z (GMT) No. of bitstreams: 2
Dissertação - Jefferson Marques Santos - 2017.pdf: 1510253 bytes, checksum: fa6dbf92bac6614d3ce705a47bbe41b8 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-07-10T14:31:23Z (GMT). No. of bitstreams: 2
Dissertação - Jefferson Marques Santos - 2017.pdf: 1510253 bytes, checksum: fa6dbf92bac6614d3ce705a47bbe41b8 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-06-20 / The concept of roots of a polynomial is quite simple but has several applications. This concept extends more generally to the case of "small" algebraic points sequences in a curve. This dissertation aims to estimate the size of algebraic numbers by means of Weil height. In addition to showing that they are distributed evenly around the unit circle, through Bilu Equidistribution Theorem. / O conceito de raízes de um polinômio é bastante simples mas possui várias aplicações. Este conceito se estende de forma mais geral para o caso de sequências de pontos algébricos “pequenos” em uma curva. Esta dissertação tem por objetivo estimar o tamanho de números algébricos por meio da altura de Weil. Além de mostrar que os mesmos se distribuem uniformemente em torno do círculo unitário, por meio do Teorema de Equidistribuição de Bilu.
|
53 |
Teoria de corpos de classe e aplicações / Class field theory and applicationsFerreira, Luan Alberto 20 July 2012 (has links)
Neste projeto, propomos estudar a chamada \"Teoria de Corpos de Classe,\" que oferece uma descrição simples das extensões abelianas de corpos locais e globais, bem como algumas de suas aplicações, como os teoremas de Kronecker-Weber e Scholz-Reichardt / In this work, we study the so called \"Class Field Theory\", which give us a simple description of the abelian extension of local and global elds. We also study some applications, like the Kronecker-Weber and Scholz-Reichardt theorems
|
54 |
Teoria de corpos de classe e aplicações / Class field theory and applicationsLuan Alberto Ferreira 20 July 2012 (has links)
Neste projeto, propomos estudar a chamada \"Teoria de Corpos de Classe,\" que oferece uma descrição simples das extensões abelianas de corpos locais e globais, bem como algumas de suas aplicações, como os teoremas de Kronecker-Weber e Scholz-Reichardt / In this work, we study the so called \"Class Field Theory\", which give us a simple description of the abelian extension of local and global elds. We also study some applications, like the Kronecker-Weber and Scholz-Reichardt theorems
|
55 |
Construção de grupos fuchsianos aritméticos provenientes de álgebras dos quatérnios e ordens maximais dos quatérnios associados a reticulados hiperbólicos / Construction of arithmetic fuchsian groups derived from quaternion algebras and maximal quaternion orders associated with hyperbolic latticesBenedito, Cintya Wink de Oliveira, 1985- 25 August 2018 (has links)
Orientadores: Reginaldo Palazzo Júnior, Cátia Regina de Oliveira Quilles Queiroz / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-25T14:53:45Z (GMT). No. of bitstreams: 1
Benedito_CintyaWinkdeOliveira_D.pdf: 1485856 bytes, checksum: 50adbb3cffa1343c4a0cd9b3d7586173 (MD5)
Previous issue date: 2014 / Resumo: Na busca por novos sistemas de comunicações muitos trabalhos têm sido realizados com o objetivo de obter constelações de sinais e códigos geometricamente uniformes no plano hiperbólico. Neste contexto, nossa proposta é identificar uma estrutura algébrica e geométrica para que códigos e reticulados possam ser construídos neste espaço. O problema central deste trabalho consiste em construir grupos fuchsianos provenientes de tesselações hiperbólicas regulares {p,q} utilizando diversos tipos de emparelhamentos e identificá-los com álgebras e ordens dos quatérnios, definindo-os assim como aritmético. Desta forma, propomos um algoritmo para construir grupos fuchsianos aritméticos provenientes de tesselações hiperbólicas regulares {p,q} cujo polígono hiperbólico regular gera uma superfície orientada de gênero maior ou igual a dois. Para isso, fornecemos uma condição necessária para que estes grupos possam ser obtidos, esta condição será denominada condição de Fermat devido a sua identificação com os números de Fermat. Através da construção destes grupos, mostramos que existe um isomorfismo entre dois grupos fuchsianos aritméticos provenientes de uma tesselação {p,q} a partir de emparelhamentos diferentes. Além disso, descrevemos alguns dos corpos de números que utilizamos para construir grupos fuchsianos aritméticos, como subcorpos maximais reais de corpos ciclotômicos, a fim de propor uma relação entre os reticulados hiperbólicos e os reticulados euclidianos. Reticulados hiperbólicos completos obtidos através da identificação de grupos fuchsianos com ordens maximais dos quatérnios também são apresentados. Desta forma, obtemos um rotulamento completo dos pontos da constelação de sinal associada / Abstract: In the search for new communications systems many studies have been conducted with the goal of obtaining signal constellations and geometrically uniform codes in the hyperbolic plane. In this context, our proposal is to identify an algebraic and geometric structures for constructing codes and lattices in this space. The central problem of this work is to construct fuchsian groups derived from hyperbolic tessellations {p,q} using different edge-pairings sets and identify them with quaternion algebras and quaternion orders, by setting it as arithmetic. We also propose an algorithm to construct arithmetic fuchsian groups from a tessellation {p,q} whose regular hyperbolic polygon generates an oriented and compact surface with genus greater or equal than 2. For that we provide a necessary condition for these groups to be obtained, this necessary condition is called Fermat condition due to its identification with the Fermat numbers. By the construction of these groups, it is also shown an isomorphism between two arithmetic fuchsian groups derived from a tessellation {p,q} via different edge-pairings sets. Furthermore, we will describe some of the number fields that we use to construct arithmetic fuchsian groups as maximal real subfields of cyclotomic fields in order to propose a relationship between hyperbolic lattices and euclidean lattices. Complete hyperbolic lattices obtained by identifying fuchsian groups with maximal quaternion orders will also be presented. In this way we have a complete labeling of the points of the corresponding signal constellation / Doutorado / Telecomunicações e Telemática / Doutora em Engenharia Elétrica
|
56 |
Reticulados q-ários e algébricos / Q-ary and algebraic latticesJorge, Grasiele Cristiane, 1983- 19 August 2018 (has links)
Orientador: Sueli Irene Rodrigues Costa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Cientifica / Made available in DSpace on 2018-08-19T16:10:47Z (GMT). No. of bitstreams: 1
Jorge_GrasieleCristiane_D.pdf: 3823740 bytes, checksum: 772a88bd2136b4afb884a6e824f37bce (MD5)
Previous issue date: 2012 / Resumo: O uso de códigos e reticulados em teoria da informação e na "chamada criptografia pós-quântica" vem sendo cada vez mais explorado. Neste trabalho estudamos temas relacionados a estas duas vertentes. A análise de reticulados foi feita via as métricas euclidiana e da soma. Para a métrica euclidiana, estudamos um algoritmo que procura pela treliça mínima de um reticulado com sub-reticulado ortogonal. No caso bidimensional foi possível caracterizar todos os sub-reticulados ortogonais de um reticulado racional qualquer. No estudo de reticulados via métrica da soma, trabalhamos com duas relações entre códigos e reticulados, conhecidas como "Construção A" e "Construção B". Generalizamos a Construção B para uma classe de códigos q-ários... Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The use of codes and lattices in Information Theory and in the so-called "Post-quantum Cryptography" has been increasingly explored. In this work we have studied topics related to these two aspects. The analysis of lattices was made via Euclidean and sum metrics. For the Euclidean metric we studied an algorithm that searches for a minimum trellis of a lattice with orthogonal sublattice. In the two-dimensional case it has been possible to characterize all orthogonal sublattices of any rational lattice. In the study of lattices via sum metric, we worked with two relations between codes and lattices, the so-called "Construction A " and "Construction B". We generalized Construction B for the class of q-ary codes...Note: The complete abstract is available with the full electronic document / Doutorado / Matematica / Doutor em Matemática
|
57 |
Reticulados algébricos : abordagem matricial e simulações / Algebraic lattices : matrix approach and simulationsFerrari, Agnaldo José, 1969- 20 August 2018 (has links)
Orientador: Sueli Irene Rodrigues Costa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T11:38:10Z (GMT). No. of bitstreams: 1
Ferrari_AgnaldoJose_D.pdf: 2344410 bytes, checksum: faa96ccdd8ff4ec461abc4f69d6cc999 (MD5)
Previous issue date: 2012 / Resumo: Neste trabalho abordamos a construção de reticulados usando propriedades da Teoria Algébrica dos Números. Enfocamos a construção de alguns reticulados com características especiais, conhecidos na literatura, via reticulados ideais, através de uma abordagem matricial e algorítmica...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: In this work we approach lattice constructions using properties of algebraic number theory. One focus is on the construction of some well known lattices via ideal lattices, through a matrix and algorithmic approach...Note: The complete abstract is available with the full electronic document / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
58 |
Conjecture de brumer-stark non abélienne / A non-abelian brumer-Stark conjectureDejou, Gaëlle 24 June 2011 (has links)
La recherche d’annulateurs du groupe des classes d’idéaux d’une extension abélienne de Q est un sujet classique et remonte à des travaux de Kummer et Stickelberger. La conjecture de Brumer-Stark porte sur les extensions abéliennes de corps de nombres et prédit qu’un élément de l’anneau de groupe du groupe de Galois, appelé élément de Brumer-Stickelberger, est un annulateur du groupe des classes de l’extension. De plus, elle stipule que les générateurs des idéaux principaux obtenus possèdent des propriétés bien particulières. Cette thèse est dédiée à la généralisation de cette conjecture aux extensions de corps de nombres galoisiennes mais non abéliennes. Dans un premier temps, nous nous focalisons sur l’étude de l’analogue non abélien de l’élément de Brumer, nécessaire à l’établissement d’une conjecture non abélienne. La seconde partie est consacrée à l’énoncé de la conjecture de Brumer-Stark non abélienne et à ses reformulations, ainsi qu’aux propriétés qu’elle vérifie. Nous nous intéressons notamment aux propriétés de changement d’extension. Nous étudions ensuite le cas spécifique des extensions dont le groupe de Galois possède un sous-groupe abélien H distingué d’indice premier. Sous la validité de la conjecture de Brumer-Stark associée à certaines extensions abéliennes, nous en déduisons deux résultats suivant la parité du cardinal de H : dans le cas impair, nous démontrons la conjecture de Brumer-Stark non abélienne, et dans le cas pair, nous établissons un résultat d’abélianité permettant d’obtenir, sous des hypothèses supplémentaires, la conjecture non abélienne. Enfin nous effectuons des vérifications numériques de la conjecture non abélienne permettant de démontrer cette conjecture dans les exemples testés. / Finding annihilators of the ideal class group of an abelian extension of Q is a classical subject which goes back to work of Kummer and Stickelberger. The Brumer-Stark conjecture deals with abelian extensions of number fields and predicts that a group ring element, called the Brumer-Stickelberger element, annihilates the ideal class group of the extension under consideration. Moreover it specifies that the generators thus obtained have special properties. The aim of this work is to generalize this conjecture to non-abelian Galois extensions. We first focus on the study of a non-abelian analogue of the Brumer element, necessary to establish a non-abelian generalization of the conjecture. The second part is devoted to the statement of our non-abelian conjecture, and the properties it satisfies. We are particularly interested in extension change properties. We then study the specific case of extensions whose Galois group has an abelian normal subgroup H of prime index. If the Brumer-Stark conjecture associated to certain abelian subextensions holds, we prove two results according to the parity of the cardinal of H : in the odd case, we get the non-abelian Brumer-Stark conjecture, and in the even case, we establish an abelianity result implying under additional hypotheses the proof of the non-abelian conjecture. Thanks to PARI-GP, we finally do some numerical verifications of the nonabelian conjecture, proving its validity in the tested examples.
|
59 |
Sur quelques questions en théorie d'Iwasawa / On some questions in Iwasawa theoryVillanueva Gutiérrez, José Ibrahim 30 June 2017 (has links)
Ce travail de thèse comporte l'étude des invariants logarithmiques le long des $l^{d}$-extensions et se compose de trois parties étroitement reliées. La première partie est un compendium sur les divers approches à l'arithmétique algorithmique, c'est à dire l'étude générale des invariants logarithmiques. En particulier on y présente quatre définitions équivalentes du groupe de classes logarithmiques et on y démontre leur équivalence. On donne aussi une preuve alternative d'un théorème d'Iwasawa de type logarithmique. La deuxième partie s'interprète comme un addendum historique sur l'étude du groupe de classes logarithmiques le long des $l$-extensions. On démontre que sous la conjecture de Gross-Kuz'min la théorie d'Iwasawa peut être bien employée pour l'étude du cas non-cyclotomique. Ainsi, on démontre des relations entre les invariants $mu$ et $lambda$ correspondant au $ell$-groupe de classes avec les invariants $ilde{mu}$ et $ilde{lambda}$ attachés aux groupes de classes logarithmiques. La troisième partie comporte l'étude du module d'Iwasawa logarithmique pour des $l^{d}$-extensions, c'est à dire du groupe de Galois $X=Gal(L_{d}/K_{d})$ de la $ell$-extension maximale abélienne logarithmiquement non-ramifiée du compositum $K_{d}$ des différentes $l$-extensions d'un corps de nombres $K$. On démontre sous la conjecture de Gross-Kuz'min, de façon analogue au cas classique, que $X$ est bien un module noethérien et de torsion sous l'algèbre d'Iwasawa de $K_{d}$. Ainsi, on déduit des relations entre les invariants logarithmiques $ilde{mu}$ et $ilde{lambda}$ des $l$-extensions de $K$ qui satisfont une hypothèse de décomposition. / This work is concerned with the study of logarithmic invariants on $l^{d}$-extensions and is subdivided in three pieces, which are closely related to each other. The first part is a compendium of the different approaches to logarithmic arithmetic, that is the study of the logarithmic invariants. In particular we show the equivalence between the four definitions of the logarithmic class group existing in the literature. Also we give an alternative proof of an Iwasawa logarithmic result. The second part can be thought as an historic addendum on the study of the logarithmic class group over $l$-extensions. Assuming the Gross-Kuz'min conjecture we show that the logarithmic class group can be studied in the Iwasawa setting for non-cyclotomic extensions. We also give relations between the classical $mu$ and $lambda$ invariants and the logarithmic invariants $ilde{mu}$ and $ilde{lambda}$ attached to the logarithmic class groups. The third part studies the properties of the Iwasawa logarithmic module for $l^{d}$-extensions, that is the Galois group $X=Gal(L_{d}/K_{d})$ of the maximal abelian $ell$-extension logarithmically unramified of the compositum $K_{d}$ of the different $l$-extensions of a number field $K$. Assuming the Gross-Kuz'min conjecture we show that $X$ is a noetherian torsion module over the Iwasawa algebra of $K_{d}$. We also deduce relations between the logarithmic invariants $ilde{mu}$ and $ilde{lambda}$ of the $l$-extensions of $K$ which satisfy a splitting condition.
|
Page generated in 0.0626 seconds