• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes de Monte Carlo en Vision Stéréoscopique

Senegas, Julien 13 September 2002 (has links) (PDF)
Cette thèse a pour objet l'étude de l'incertitude attachée à l'estimation de la géometrie d'une scène à partir d'un couple stéréoscopique d'images. La mise en correspondance des points homologues d'un couple suppose la similarité locale des deux images et nécessite une information radiométrique discriminante. Dans de nombreuses situations cependant (déformations géométriques, bruit d'acquisition, manque de contraste, ....), ces hypothèses sont mises en défaut et les erreurs d'appariemment qui en résultent dépendent fortement de l'information contenue dans le couple et non du sytème stéréoscopique lui-meme. <br />Afin d'aborder ce problème, nous proposons un cadre bayésien et l'application de méthodes de Monte Carlo par chaînes de Markov. Celles-ci consistent à simuler la distribution conditionnelle du champ de disparité connaissant le couple stéréoscopique et permettent de déterminer les zones où des erreurs importantes peuvent apparaitre avec une probabilité éventuellement faible. Différents modèles stochastiques sont comparés et testés a partir de scènes stéréoscopiques SPOT, et nous donnons quelques pistes pour étendre ces modèles à d'autres types d'images. Nous nous intéressons également au probleme de l'estimation des paramètres de ces modèles et proposons un certain nombre d'algorithmes permettant une estimation automatique. Enfin, une part importante du travail est consacrée à l'étude d'algorithmes de simulation reposant sur la théorie des chaînes de Markov. L'apport essentiel réside dans l'extension de l'algorithme de Metropolis-Hastings dans une perspective multi-dimensionnelle. Une application performante reposant sur l'utilisation de la loi gaussienne est donnée. De plus, nous montrons comment le recours à des techniques d'échantillonnage d'importance permet de diminuer efficacement le temps de calcul.
2

New simulation schemes for the Heston model

Bégin, Jean-François 06 1900 (has links)
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma. / Financial stocks are often modeled by stochastic differential equations (SDEs). These equations could describe the behavior of the underlying asset as well as some of the model's parameters. For example, the Heston (1993) model, which is a stochastic volatility model, describes the behavior of the stock and the variance of the latter. The Heston model is very interesting since it has semi-closed formulas for some derivatives, and it is quite realistic. However, many simulation schemes for this model have problems when the Feller (1951) condition is violated. In this thesis, we introduce new simulation schemes to simulate price paths using the Heston model. These new algorithms are based on Broadie and Kaya's (2006) method. In order to increase the speed of the exact scheme of Broadie and Kaya, we use, among other things, Markov chains Monte Carlo (MCMC) algorithms and some well-chosen approximations. In our first algorithm, we modify the second step of the Broadie and Kaya's method in order to get faster schemes. Instead of using the second-order Newton method coupled with the inversion approach, we use a Metropolis-Hastings algorithm. The second algorithm is a small improvement of our latter scheme. Instead of using the real integrated variance over time p.d.f., we use Smith's (2007) approximation. This helps us decrease the dimension of our problem (from three to two). Our last algorithm is not based on MCMC methods. However, we still try to speed up the second step of Broadie and Kaya. In order to achieve this, we use a moment-matched gamma random variable. According to Stewart et al. (2007), it is possible to approximate a complex gamma convolution (somewhat near the representation given by Glasserman and Kim (2008) when T-t is close to zero) by a gamma distribution.
3

New simulation schemes for the Heston model

Bégin, Jean-François 06 1900 (has links)
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma. / Financial stocks are often modeled by stochastic differential equations (SDEs). These equations could describe the behavior of the underlying asset as well as some of the model's parameters. For example, the Heston (1993) model, which is a stochastic volatility model, describes the behavior of the stock and the variance of the latter. The Heston model is very interesting since it has semi-closed formulas for some derivatives, and it is quite realistic. However, many simulation schemes for this model have problems when the Feller (1951) condition is violated. In this thesis, we introduce new simulation schemes to simulate price paths using the Heston model. These new algorithms are based on Broadie and Kaya's (2006) method. In order to increase the speed of the exact scheme of Broadie and Kaya, we use, among other things, Markov chains Monte Carlo (MCMC) algorithms and some well-chosen approximations. In our first algorithm, we modify the second step of the Broadie and Kaya's method in order to get faster schemes. Instead of using the second-order Newton method coupled with the inversion approach, we use a Metropolis-Hastings algorithm. The second algorithm is a small improvement of our latter scheme. Instead of using the real integrated variance over time p.d.f., we use Smith's (2007) approximation. This helps us decrease the dimension of our problem (from three to two). Our last algorithm is not based on MCMC methods. However, we still try to speed up the second step of Broadie and Kaya. In order to achieve this, we use a moment-matched gamma random variable. According to Stewart et al. (2007), it is possible to approximate a complex gamma convolution (somewhat near the representation given by Glasserman and Kim (2008) when T-t is close to zero) by a gamma distribution.

Page generated in 0.091 seconds