• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 12
  • 6
  • Tagged with
  • 64
  • 64
  • 30
  • 23
  • 17
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Um metodo numerico com paralelismo no tempo para aproximar solucoes de EDPs / A numerical method with parallelism in time to approximate solutions to PDEs

Washington Santos da Silva 10 June 2014 (has links)
Este trabalho de pesquisa tem por objetivo apresentar e investigar a viabilidade de um método numérico que contempla o paralelismo no tempo. Este método numérico está associado a problemas de condição inicial e de contorno para equações diferenciais parciais (evolutivas). Diferentemente do método proposto neste trabalho, a maioria dos métodos numéricos associados a equações diferencias parciais evolutivas e tradicionalmente encontrados, contemplam apenas o paralelismo no espaço. Daí, a motivação em realizar o presente trabalho de pesquisa, buscando não somente um método com paralelismo no tempo mas, sobretudo, um método viável do ponto de vista computacional. Para isso, a implementação do esquema numérico proposto está por conta de um algoritmo paralelo escrito na linguagem C e que utiliza a biblioteca MPI. A análise dos resultados obtidos com os testes de desempenho revelam um método numérico escalável e que exige pouco nível de comunicação entre processadores. / This research aims to present and investigate the feasibility of a numerical method that considers the parallelism in time. This numerical method is associated with problems of initial and boundary conditions for (evolutionary) partial differential equations. Unlike the method proposed in this work, most of the numerical methods associated with evolutionary partial diferential equations and traditionally found include only parallelism in space. Hence, the motivation for carrying out the present research work,seeking not only a method with parallelism in time but,above all, a viable method. The implementation of this proposed computational parallel algorithm was written with the language C and uses the MPI library. The results obtained from performance tests reveal a scalable and numerical method that requires little level of communication amount processors
42

Algoritmos paralelos para alocação e gerência de processadores em máquinas multiprocessadoras hipercúbicas / Parallel algorithms for processor allocation in hypercubes

De Rose, Cesar Augusto Fonticielha January 1993 (has links)
Nos últimos anos, máquinas maciçamente paralelas, compostas de centenas de processadores, vem sendo estudadas como uma alternativa para a construção de supercomputadores. Neste novo conceito de processamento de dados, grandes velocidades são alcançadas através da cooperação entre os diversos elementos processadores na resolução de um problema. Grande parte das máquinas maciçamente paralelas encontradas no mercado utilizam-se da topologia hipercúbica para a interconexão de seus múltiplos processadores, ou podem ser configuradas como tal. Uma alternativa interessante para o compartilhamento da capacidade de processamento destas máquinas é sua utilização como computador agregado a uma rede, servindo a diversos usuários [DUT 91]. Desta forma, a máquina hipercúbica se comporta como um banco de processadores, que permite que cada usuário aloque parte de seus processadores para seu uso pessoal. Isto resulta em um aumento no desempenho da rede ao nível de supercomputadores com um custo relativamente baixo e viabiliza a construção de máquinas hipercúbicas com altas dimensões, evitando que estas sejam sub-utilizadas. Neste tipo de contexto, cabe ao sistema operacional atender as requisições dos usuários do hipercubo compartilhado de forma eficiente, a fim de evitar uma rápida fragmentação do cubo e de não exceder o tempo máximo de espera de uma determinada aplicação. A partir dos algoritmos propostos é apresentada a definição de um servidor de processadores para o compartilhamento de uma máquina multiprocessadora hipercúbica em uma rede de estações de trabalho. Algumas funções deste servidor são implementadas por um protótipo denominado Sub-Cube RPC. Com o objetivo de analisar o comportamento da rede de estações em relação a inclusão de um novo recurso a ser compartilhado, foi desenvolvido, juntamente com o grupo de Avaliação de Desempenho ADMP, um simulador para o ambiente SUN/UNIX. Através desta ferramenta e dos tempos de resposta obtidos pelo protótipo do servidor desenvolvido é possível avaliar o custo que o tráfego gerado pelo servidor adiciona à rede, sendo possível a manipulação de parâmetros da rede e do servidor. Os resultados obtidos nas versões paralelas implementadas são comparados com o desempenho das versões seqüenciais. Para viabilizar esta comparação, todos os algoritmos seqüenciais encontrados na literatura também foram implementados na linguagem "C" no ambiente alvo UNIX e encontram-se em anexo. As versões paralelas foram implementadas utilizando-se recursos da própria rede de estações, através de diretivas socket, e também em Transputers na linguagem C paralela. O protótipo do servidor de processadores foi implementado como um servidor RPC para uma rede de estações UNIX também na linguagem "C". A ferramenta de simulação para o funcionamento do servidor foi implementada na linguagem "C" e seu sistema de entrada de dados e visualização utiliza a interface X-Windows. Com os resultados deste trabalho se pode ter uma boa idéia dos efeitos e das dificuldades encontradas na paralelização dos algoritmos de alocação e gerência de processadores para máquinas Hipercúbicas. As informações contidas no trabalho auxiliam na melhoria do tempo de resposta dos algoritmos seqüenciais atuais e no desenvolvimento de novos algoritmos com mais recursos e ainda assim viáveis em ambientes interativos, graças a utilização de paralelismo. O protótipo Sub-Cube RPC demonstra como os algoritmos estudados neste trabalho podem ser aplicados na construção de um servidor de processadores para máquinas multiprocessadas. O protótipo servirá como base para a implementação de um servidor semelhante no CPGCC/UFRGS, que colocará uma placa de Transputers à disposição da rede de estações do grupo de processamento paralelo. / In the last years massively parallel machines, build with hundreds of processors, are becoming an alternative for the construction of supercomputers. In this new concept of data processing, high performance is achieved by processor cooperation in the resolution of a problem. A great part of the commercial massively parallel machines utilizes the hypercubic topology to interconnect their multiple processors, or may be configured as hypercubes. A very interesting alternative for sharing the processing power of this machines is their utilization as aggregated computer in a network, serving various users [DUT 91]. In such environment, the hypercube behaves like a processor server, permitting the users to allocate part of its processors for local use. This result in a enhancement in the performance of workstation networks to the level of supercomputers and allow higher dimension hypercubes to be better utilized. In such environment the operating system is responsible for serving the users of a shared multiprocessor in a efficient way, not allowing a quick fragmentation of the hypercube and observing the maximal waiting time for the applications. The algorithms for processor allocation and management are responsible for obtention and control of one or more processors of the shared machine for the user's task execution. In this study, parallel versions of the most important algorithms for processor allocation and management in hypercubes found in the literature are proposed. The intention with this paralelization is to achieved a better response time of the more complex algorithms, making their use possible in a real time sharing environment. Because the allocation is considered the most important part of the processor server, the utilization of more complex algorithms allows a better utilization of the shared processors, resulting in a performance increase of the parallel machine. Based on the proposed algorithms, a processor server is defined for sharing a hypercubic multiprocessor in a workstation network. Some functions of this server are implemented in a prototype called Sub-Cube RPC. To analyze the behavior of the network, in relation to the inclusion of this new shared resource, a simulator for the SUN/UNIX environment has been developed together with the Performance Evaluation Group ADMP. With this tool and with the response times of the developed server prototype, it is possible to evaluate the cost of the additional network traffic generated by the server, with the possibility to change parameters of the server and network. The results obtained in the implemented parallel versions are compared with the performance of the sequential algorithms. To make this comparison possible all the sequential algorithms found in the literature are also implemented in the "C" language and can be found in annex. The parallel versions were implemented using network resources, through the socket directive, and also using Transputers in parallel "C". The processor server prototype was implemented as a RPC server for an UNIX network, also in the "C" language. The simulation tool was coded in "C" and the I/O interface use the X-Windows protocol. The results of this study may give a background about the effects and difficulties found in the pa ralelization of the allocation algorithms for the hypercubic machines. The information found in this study will help the operating system designer to obtain a better response time of the sequential algorithms found in the literature and in the development of new and more complex algorithms that will be still practicable in a real time environment due to parallelism utilization. The Sub-Cube RPC prototype demonstrates how the algorithms studied in this work can be applied in the construction of a processor server for multiprocessors. The prototype is the first step for the implementation of a similar server in the CPGCC/UFRGS that will share a Transputer board in a network of workstations from the parallel processing group.
43

Algoritmos paralelos para alocação e gerência de processadores em máquinas multiprocessadoras hipercúbicas / Parallel algorithms for processor allocation in hypercubes

De Rose, Cesar Augusto Fonticielha January 1993 (has links)
Nos últimos anos, máquinas maciçamente paralelas, compostas de centenas de processadores, vem sendo estudadas como uma alternativa para a construção de supercomputadores. Neste novo conceito de processamento de dados, grandes velocidades são alcançadas através da cooperação entre os diversos elementos processadores na resolução de um problema. Grande parte das máquinas maciçamente paralelas encontradas no mercado utilizam-se da topologia hipercúbica para a interconexão de seus múltiplos processadores, ou podem ser configuradas como tal. Uma alternativa interessante para o compartilhamento da capacidade de processamento destas máquinas é sua utilização como computador agregado a uma rede, servindo a diversos usuários [DUT 91]. Desta forma, a máquina hipercúbica se comporta como um banco de processadores, que permite que cada usuário aloque parte de seus processadores para seu uso pessoal. Isto resulta em um aumento no desempenho da rede ao nível de supercomputadores com um custo relativamente baixo e viabiliza a construção de máquinas hipercúbicas com altas dimensões, evitando que estas sejam sub-utilizadas. Neste tipo de contexto, cabe ao sistema operacional atender as requisições dos usuários do hipercubo compartilhado de forma eficiente, a fim de evitar uma rápida fragmentação do cubo e de não exceder o tempo máximo de espera de uma determinada aplicação. A partir dos algoritmos propostos é apresentada a definição de um servidor de processadores para o compartilhamento de uma máquina multiprocessadora hipercúbica em uma rede de estações de trabalho. Algumas funções deste servidor são implementadas por um protótipo denominado Sub-Cube RPC. Com o objetivo de analisar o comportamento da rede de estações em relação a inclusão de um novo recurso a ser compartilhado, foi desenvolvido, juntamente com o grupo de Avaliação de Desempenho ADMP, um simulador para o ambiente SUN/UNIX. Através desta ferramenta e dos tempos de resposta obtidos pelo protótipo do servidor desenvolvido é possível avaliar o custo que o tráfego gerado pelo servidor adiciona à rede, sendo possível a manipulação de parâmetros da rede e do servidor. Os resultados obtidos nas versões paralelas implementadas são comparados com o desempenho das versões seqüenciais. Para viabilizar esta comparação, todos os algoritmos seqüenciais encontrados na literatura também foram implementados na linguagem "C" no ambiente alvo UNIX e encontram-se em anexo. As versões paralelas foram implementadas utilizando-se recursos da própria rede de estações, através de diretivas socket, e também em Transputers na linguagem C paralela. O protótipo do servidor de processadores foi implementado como um servidor RPC para uma rede de estações UNIX também na linguagem "C". A ferramenta de simulação para o funcionamento do servidor foi implementada na linguagem "C" e seu sistema de entrada de dados e visualização utiliza a interface X-Windows. Com os resultados deste trabalho se pode ter uma boa idéia dos efeitos e das dificuldades encontradas na paralelização dos algoritmos de alocação e gerência de processadores para máquinas Hipercúbicas. As informações contidas no trabalho auxiliam na melhoria do tempo de resposta dos algoritmos seqüenciais atuais e no desenvolvimento de novos algoritmos com mais recursos e ainda assim viáveis em ambientes interativos, graças a utilização de paralelismo. O protótipo Sub-Cube RPC demonstra como os algoritmos estudados neste trabalho podem ser aplicados na construção de um servidor de processadores para máquinas multiprocessadas. O protótipo servirá como base para a implementação de um servidor semelhante no CPGCC/UFRGS, que colocará uma placa de Transputers à disposição da rede de estações do grupo de processamento paralelo. / In the last years massively parallel machines, build with hundreds of processors, are becoming an alternative for the construction of supercomputers. In this new concept of data processing, high performance is achieved by processor cooperation in the resolution of a problem. A great part of the commercial massively parallel machines utilizes the hypercubic topology to interconnect their multiple processors, or may be configured as hypercubes. A very interesting alternative for sharing the processing power of this machines is their utilization as aggregated computer in a network, serving various users [DUT 91]. In such environment, the hypercube behaves like a processor server, permitting the users to allocate part of its processors for local use. This result in a enhancement in the performance of workstation networks to the level of supercomputers and allow higher dimension hypercubes to be better utilized. In such environment the operating system is responsible for serving the users of a shared multiprocessor in a efficient way, not allowing a quick fragmentation of the hypercube and observing the maximal waiting time for the applications. The algorithms for processor allocation and management are responsible for obtention and control of one or more processors of the shared machine for the user's task execution. In this study, parallel versions of the most important algorithms for processor allocation and management in hypercubes found in the literature are proposed. The intention with this paralelization is to achieved a better response time of the more complex algorithms, making their use possible in a real time sharing environment. Because the allocation is considered the most important part of the processor server, the utilization of more complex algorithms allows a better utilization of the shared processors, resulting in a performance increase of the parallel machine. Based on the proposed algorithms, a processor server is defined for sharing a hypercubic multiprocessor in a workstation network. Some functions of this server are implemented in a prototype called Sub-Cube RPC. To analyze the behavior of the network, in relation to the inclusion of this new shared resource, a simulator for the SUN/UNIX environment has been developed together with the Performance Evaluation Group ADMP. With this tool and with the response times of the developed server prototype, it is possible to evaluate the cost of the additional network traffic generated by the server, with the possibility to change parameters of the server and network. The results obtained in the implemented parallel versions are compared with the performance of the sequential algorithms. To make this comparison possible all the sequential algorithms found in the literature are also implemented in the "C" language and can be found in annex. The parallel versions were implemented using network resources, through the socket directive, and also using Transputers in parallel "C". The processor server prototype was implemented as a RPC server for an UNIX network, also in the "C" language. The simulation tool was coded in "C" and the I/O interface use the X-Windows protocol. The results of this study may give a background about the effects and difficulties found in the pa ralelization of the allocation algorithms for the hypercubic machines. The information found in this study will help the operating system designer to obtain a better response time of the sequential algorithms found in the literature and in the development of new and more complex algorithms that will be still practicable in a real time environment due to parallelism utilization. The Sub-Cube RPC prototype demonstrates how the algorithms studied in this work can be applied in the construction of a processor server for multiprocessors. The prototype is the first step for the implementation of a similar server in the CPGCC/UFRGS that will share a Transputer board in a network of workstations from the parallel processing group.
44

Solução paralela para sistemas de balanço não-lineares / Parallel solution of nonlinear balance systems

Gustavo Hime 27 September 2007 (has links)
Modelos para diversos fenômenos baseiam-se em equações de balanço ou conservação. Dependendo do fenônemo e do que é admitido pelo modelo, nas equações são simplificadas e resolvidas de diferentes modos. O problema de injeção em um meio poroso de um fluido bifásico cujo equilíbrio depende da temperatura, por exemplo, pode ser modelado por uma equação de conservação de massa que inclui um termo difusivo; esta equação, por sua vez, pode ser discretizada por diferenças finitas tanto no tempo quanto no espaço e resolvida numericamente. O estudo estritamente analítico destes modelos é muito limitado. Uma compreensão mais detalhada do comportamento do modelo só pode ser obtida através de simulações numéricas e do estudo qualitativo de seus resultados. Os resultados de uma simulação só podem ser visualizados uma vez que esta tenha sido concluída: mas simulações de alta qualidade requerem simulações em malhas mais finas, que necessitam de mais tempo computacional. Mesmo para fluxos unidimensionais, o ciclo interativo de especificar os parâmetros para uma nova simulação com base nas conclusões tiradas de simulações prévias necessariamente inclui um tempo de espera indesejável. Sistemas capazes de resolver esta classe de problemas numéricos rápida e eficientemente são portanto o objetivo principal deste trabalho. Para obter alto desempenho no cálculo destas soluções, muitos fatores precisam ser levados em consideração: o custo computacional inerente às equações constitutivas usadas no modelo, o tipo específico de sistema linear resultante da discretização do problema, as diferentes alternativas quanto ao algoritmo de solução do sistema e suas implementações e os pontos fortes e limitações impostas por cada ambiente computacional que se deseja explorar. Como resultado do teste de diversas abordagens em diferentes máquinas, nós obtemos não somente um motor numérico eficiente para os casos de estudo apresentados neste trabalho, mas também um guia para a aplicação destas técnicas a problemas similares.
45

Um metodo numerico com paralelismo no tempo para aproximar solucoes de EDPs / A numerical method with parallelism in time to approximate solutions to PDEs

Washington Santos da Silva 10 June 2014 (has links)
Este trabalho de pesquisa tem por objetivo apresentar e investigar a viabilidade de um método numérico que contempla o paralelismo no tempo. Este método numérico está associado a problemas de condição inicial e de contorno para equações diferenciais parciais (evolutivas). Diferentemente do método proposto neste trabalho, a maioria dos métodos numéricos associados a equações diferencias parciais evolutivas e tradicionalmente encontrados, contemplam apenas o paralelismo no espaço. Daí, a motivação em realizar o presente trabalho de pesquisa, buscando não somente um método com paralelismo no tempo mas, sobretudo, um método viável do ponto de vista computacional. Para isso, a implementação do esquema numérico proposto está por conta de um algoritmo paralelo escrito na linguagem C e que utiliza a biblioteca MPI. A análise dos resultados obtidos com os testes de desempenho revelam um método numérico escalável e que exige pouco nível de comunicação entre processadores. / This research aims to present and investigate the feasibility of a numerical method that considers the parallelism in time. This numerical method is associated with problems of initial and boundary conditions for (evolutionary) partial differential equations. Unlike the method proposed in this work, most of the numerical methods associated with evolutionary partial diferential equations and traditionally found include only parallelism in space. Hence, the motivation for carrying out the present research work,seeking not only a method with parallelism in time but,above all, a viable method. The implementation of this proposed computational parallel algorithm was written with the language C and uses the MPI library. The results obtained from performance tests reveal a scalable and numerical method that requires little level of communication amount processors
46

Reconstrução de imagens por tomografia por impedância elétrica utilizando recozimento simulado massivamente paralelizado. / Image reconstruction through electrical impedance tomography using massively parallelized simulated annealing.

Tavares, Renato Seiji 06 May 2016 (has links)
A tomografia por impedância elétrica é uma modalidade de imageamento médico recente, com diversas vantagens sobre as demais modalidades já consolidadas. O recozimento simulado é um algoritmo que apresentada qualidade de solução, mesmo com a utilização de uma regularização simples e sem informação a priori. Entretanto, existe a necessidade de reduzir o tempo de processamento. Este trabalho avança nessa direção, com a apresentação de um método de reconstrução que utiliza o recozimento simulado e paralelização massiva em GPU. A paralelização das operações matriciais em GPU é explicada, com uma estratégia de agendamento de threads que permite a paralelização efetiva de algoritmos, até então, considerados não paralelizáveis. Técnicas para sua aceleração são discutidas, como a heurística de fora para dentro. É proposta uma nova representação de matrizes esparsas voltada para as características da arquitetura CUDA, visando um melhor acesso à memória global do dispositivo e melhor utilização das threads. Esta nova representação de matriz mostrou-se vantajosa em relação aos formatos mais utilizados. Em seguida, a paralelização massiva do problema inverso da TIE, utilizando recozimento simulado, é estudada, com uma proposta de abordagem híbrida com paralelização tanto em CPU quanto GPU. Os resultados obtidos para a paralelização do problema inverso são superiores aos do problema direto. A GPU satura em aproximadamente 7.000 nós, a partir do qual o ganho em desempenho é de aproximadamente 5 vezes. A utilização de GPUs é viável para a reconstrução de imagens de tomografia por impedância elétrica. / Electrical impedance tomography is a new medical imaging modality with remarkable advatanges over other stablished modalities. Simulated annealing is an algorithm that renders quality solutions despite the use of simple regularization methods and the absence of a priori information. However, it remains the need to reduce its processing time. This work takes a step in this direction, presenting a method for the reconstruction of EIT images using simulated annealing and GPU parallelization. The parallelization of matrix operations in GPU is explained, with a thread scheduling strategy that allows the effective parallelization of not-yet effectively parallelized algorithms. There are strategies for improving its performance, such as the presented outside-in heuristic. It is proposed a new sparse matrix representation focused on the CUDA architecture characteristics, with improved global memory access patterns and thread efficiency. This new matrix representation showed several advantages over the most common formats. The massive parallelization of the TIE\'s inverse problem using simulated annealing is studied, with a proposed hybrid approach that uses parallelization in both CPU and GPU. Results showed that the performance gain for the inverse problem is higher than the one obtained for the forward problem. The GPU device saturates with meshes of size of approximately 7,000 nodes, with a performance gain around 5 times faster than serial implementations. GPU parallelization may be used for the reconstruction of electrical impedance tomography images.
47

Parallel algorithms and data structures for interactive applications / Algoritmos Paralelos e Estruturas de Dados para Aplicações Interativas / Algorithmes et Structures de Données Parallèles pour Applications Interactives

Toss, Julio January 2017 (has links)
La quête de performance a été une constante à travers l’histoire des systèmes informatiques. Il y a plus d’une décennie maintenant, le modèle de traitement séquentiel montrait ses premiers signes d’épuisement pour satisfaire les exigences de performance. Les barrières du calcul séquentiel ont poussé à un changement de paradigme et ont établi le traitement parallèle comme standard dans les systèmes informatiques modernes. Avec l’adoption généralisée d’ordinateurs parallèles, de nombreux algorithmes et applications ont été développés pour s’adapter à ces nouvelles architectures. Cependant, dans des applications non conventionnelles, avec des exigences d’interactivité et de temps réel, la parallélisation efficace est encore un défi majeur. L’exigence de performance en temps réel apparaît, par exemple, dans les simulations interactives où le système doit prendre en compte l’entrée de l’utilisateur dans une itération de calcul de la boucle de simulation. Le même type de contrainte apparaît dans les applications d’analyse de données en continu. Par exemple, lorsque des donnes issues de capteurs de trafic ou de messages de réseaux sociaux sont produites en flux continu, le système d’analyse doit être capable de traiter ces données à la volée rapidement sur ce flux tout en conservant un budget de mémoire contrôlé La caractéristique dynamique des données soulève plusieurs problèmes de performance tel que la décomposition du problème pour le traitement en parallèle et la maintenance de la localité mémoire pour une utilisation efficace du cache. Les optimisations classiques qui reposent sur des modèles pré-calculés ou sur l’indexation statique des données ne conduisent pas aux performances souhaitées. Dans cette thèse, nous abordons les problèmes dépendants de données sur deux applications différentes : la première dans le domaine de la simulation physique interactive et la seconde sur l’analyse des données en continu. Pour le problème de simulation, nous présentons un algorithme GPU parallèle pour calculer les multiples plus courts chemins et des diagrammes de Voronoi sur un graphe en forme de grille. Pour le problème d’analyse de données en continu, nous présentons une structure de données parallélisable, basée sur des Packed Memory Arrays, pour indexer des données dynamiques géo-référencées tout en conservant une bonne localité de mémoire. / A busca por desempenho tem sido uma constante na história dos sistemas computacionais. Ha mais de uma década, o modelo de processamento sequencial já mostrava seus primeiro sinais de exaustão pare suprir a crescente exigência por performance. Houveram "barreiras"para a computação sequencial que levaram a uma mudança de paradigma e estabeleceram o processamento paralelo como padrão nos sistemas computacionais modernos. Com a adoção generalizada de computadores paralelos, novos algoritmos foram desenvolvidos e aplicações reprojetadas para se adequar às características dessas novas arquiteturas. No entanto, em aplicações menos convencionais, com características de interatividade e tempo real, alcançar paralelizações eficientes ainda representa um grande desafio. O requisito por desempenho de tempo real apresenta-se, por exemplo, em simulações interativas onde o sistema deve ser capaz de reagir às entradas do usuário dentro do tempo de uma iteração da simulação. O mesmo tipo de exigência aparece em aplicações de monitoramento de fluxos contínuos de dados (streams). Por exemplo, quando dados provenientes de sensores de tráfego ou postagens em redes sociais são produzidos em fluxo contínuo, o sistema de análise on-line deve ser capaz de processar essas informações em tempo real e ao mesmo tempo manter um consumo de memória controlada A natureza dinâmica desses dados traz diversos problemas de performance, tais como a decomposição do problema para processamento em paralelo e a manutenção da localidade de dados para uma utilização eficiente da memória cache. As estratégias de otimização tradicionais, que dependem de modelos pré-computados ou de índices estáticos sobre os dados, não atendem às exigências de performance necessárias nesses cenários. Nesta tese, abordamos os problemas dependentes de dados em dois contextos diferentes: um na área de simulações baseada em física e outro em análise de dados em fluxo contínuo. Para o problema de simulação, apresentamos um algoritmo paralelo, em GPU, para computar múltiplos caminhos mínimos e diagramas de Voronoi em um grafo com topologia de grade. Para o problema de análise de fluxos de dados, apresentamos uma estrutura de dados paralelizável, baseada em Packed Memory Arrays, para indexar dados dinâmicos geo-localizados ao passo que mantém uma boa localidade de memória. / The quest for performance has been a constant through the history of computing systems. It has been more than a decade now since the sequential processing model had shown its first signs of exhaustion to keep performance improvements. Walls to the sequential computation pushed a paradigm shift and established the parallel processing as the standard in modern computing systems. With the widespread adoption of parallel computers, many algorithms and applications have been ported to fit these new architectures. However, in unconventional applications, with interactivity and real-time requirements, achieving efficient parallelizations is still a major challenge. Real-time performance requirement shows up, for instance, in user-interactive simulations where the system must be able to react to the user’s input within a computation time-step of the simulation loop. The same kind of constraint appears in streaming data monitoring applications. For instance, when an external source of data, such as traffic sensors or social media posts, provides a continuous flow of information to be consumed by an online analysis system. The consumer system has to keep a controlled memory budget and deliver a fast processed information about the stream Common optimizations relying on pre-computed models or static index of data are not possible in these highly dynamic scenarios. The dynamic nature of the data brings up several performance issues originated from the problem decomposition for parallel processing and from the data locality maintenance for efficient cache utilization. In this thesis we address data-dependent problems on two different applications: one on physically based simulations and another on streaming data analysis. To deal with the simulation problem, we present a parallel GPU algorithm for computing multiple shortest paths and Voronoi diagrams on a grid-like graph. Our contribution to the streaming data analysis problem is a parallelizable data structure, based on packed memory arrays, for indexing dynamic geo-located data while keeping good memory locality.
48

Otimização por enxame de partículas em arquiteturas paralelas de alto desempenho. / Particle swarm optimization in high-performance parallel architectures.

Rogério de Moraes Calazan 21 February 2013 (has links)
A Otimização por Enxame de Partículas (PSO, Particle Swarm Optimization) é uma técnica de otimização que vem sendo utilizada na solução de diversos problemas, em diferentes áreas do conhecimento. Porém, a maioria das implementações é realizada de modo sequencial. O processo de otimização necessita de um grande número de avaliações da função objetivo, principalmente em problemas complexos que envolvam uma grande quantidade de partículas e dimensões. Consequentemente, o algoritmo pode se tornar ineficiente em termos do desempenho obtido, tempo de resposta e até na qualidade do resultado esperado. Para superar tais dificuldades, pode-se utilizar a computação de alto desempenho e paralelizar o algoritmo, de acordo com as características da arquitetura, visando o aumento de desempenho, a minimização do tempo de resposta e melhoria da qualidade do resultado final. Nesta dissertação, o algoritmo PSO é paralelizado utilizando três estratégias que abordarão diferentes granularidades do problema, assim como dividir o trabalho de otimização entre vários subenxames cooperativos. Um dos algoritmos paralelos desenvolvidos, chamado PPSO, é implementado diretamente em hardware, utilizando uma FPGA. Todas as estratégias propostas, PPSO (Parallel PSO), PDPSO (Parallel Dimension PSO) e CPPSO (Cooperative Parallel PSO), são implementadas visando às arquiteturas paralelas baseadas em multiprocessadores, multicomputadores e GPU. Os diferentes testes realizados mostram que, nos problemas com um maior número de partículas e dimensões e utilizando uma estratégia com granularidade mais fina (PDPSO e CPPSO), a GPU obteve os melhores resultados. Enquanto, utilizando uma estratégia com uma granularidade mais grossa (PPSO), a implementação em multicomputador obteve os melhores resultados. / Particle Swarm Optimization (PSO) is an optimization technique that is used to solve many problems in different applications. However, most implementations are sequential. The optimization process requires a large number of evaluations of the objective function, especially in complex problems, involving a large amount of particles and dimensions. As a result, the algorithm may become inefficient in terms of performance, execution time and even the quality of the expected result. To overcome these difficulties,high performance computing and parallel algorithms can be used, taking into account to the characteristics of the architecture. This should increase performance, minimize response time and may even improve the quality of the final result. In this dissertation, the PSO algorithm is parallelized using three different strategies that consider different granularities of the problem, and the division of the optimization work among several cooperative sub-swarms. One of the developed parallel algorithms, namely PPSO, is implemented directly in hardware, using an FPGA. All the proposed strategies, namely PPSO ( Parallel PSO), PDPSO (Parallel Dimension PSO) and CPPSO (Cooperative Parallel PSO), are implemented in a multiprocessor, multicomputer and GPU based parallel architectures. The different performed assessments show that the GPU achieved the best results for problems with high number of particles and dimensions when a strategy with finer granularity is used, namely PDPSO and CPPSO. In contrast with this, when using a strategy with a coarser granularity, namely PPSO, the multi-computer based implementation achieved the best results.
49

Analysis of synchronizations in greedy-scheduled executions and applications to efficient generation of pseudorandom numbers in parallel / Análise de sincronizações em execuções por escalonamento guloso e aplicações para geração eficiente de números pseudoaleatórios em paralelo / Analyse des synchronisations dans un programme parallèle ordonnancé par vol de travail applications à la génération déterministe de nombres pseudo-aléatoires

Mor, Stefano Drimon Kurz January 2015 (has links)
Nous présentons deux contributions dans le domaine de la programmation parallèle. La première est théorique : nous introduisons l’analyse SIPS, une approche nouvelle pour dénombrer le nombre d’opérations de synchronisation durant l’exécution d’un algorithme parallèle ordonnancé par vol de travail. Basée sur le concept d’horloges logiques, elle nous permet : d’une part de donner de nouvelles majorations de coût en moyenne; d’autre part de concevoir des programmes parallèles plus efficaces par adaptation dynamique de la granularité. La seconde contribution est pragmatique : nous présentons une parallélisation générique d’algorithmes pour la génération déterministe de nombres pseudo-aléatoires, indépendamment du nombre de processus concurrents lors de l’exécution. Alternative à l’utilisation d’un générateur pseudo-aléatoire séquentiel par processus, nous introduisons une API générique, appelée Par-R qui est conçue et analysée grâce à SIPS. Sa caractéristique principale est d’exploiter un générateur séquentiel qui peut “sauter” directement d’un nombre à un autre situé à une distance arbitraire dans la séquence pseudo-aléatoire. Grâce à l’analyse SIPS, nous montrons qu’en moyenne, lors d’une exécution par vol de travail d’un programme très parallèle (dont la profondeur ou chemin critique est très petite devant le travail ou nombre d’opérations), ces opérations de saut sont rares. Par-R est comparé au générateur pseudo-aléatoire DotMix écrit pour Cilk Plus, une extension de C/C++ pour la programmation parallèle par vol de travail. Le surcout théorique de Par-R se compare favorablement au surcoput de DotMix, ce qui apparait aussi expériemntalement. De plus, étant générique, Par-R est indépendant du générateur séquentiel sous-jacent. / Nós apresentamos duas contribuições para a área de programação paralela. A primeira contribuição é teórica: nós introduzimos a análise SIPS, uma nova abordagem para a estimar o número de sincronizações realizadas durante a execução de um algoritmo paralelo. SIPS generaliza o conceito de relógios lógicos para contar o número de sincronizações realizadas por um algoritmo paralelo e é capaz de calcular limites do pior caso mesmo na presença de execuções paralelas não-determinísticas, as quais não são geralmente cobertas por análises no estado-da-arte. Nossa análise nos permite estimar novos limites de pior caso para computações escalonadas pelo popular algoritmo de roubo de tarefas e também projetar programas paralelos e adaptáveis que são mais eficientes. A segunda contribuição é pragmática: nós apresentamos uma estratégia de paralelização eficiente para a geração de números pseudoaleatórios. Como uma alternativa para implementações fixas de componentes de geração aleatória nós introduzimos uma API chamada Par-R, projetada e analisada utilizando-se SIPS. Sua principal idea é o uso da capacidade de um gerador sequencial R de realizar um “pulo” eficiente dentro do fluxo de números gerados; nós os associamos a operações realizadas pelo escalonador por roubo de tarefas, o qual nossa análise baseada em SIPS demonstra ocorrer raramente em média. Par-R é comparado com o gerador paralelo de números pseudoaleatórios DotMix, escrito para a plataforma de multithreading dinâmico Cilk Plus. A latência de Par-R tem comparação favorável à latência do DotMix, o que é confirmado experimentalmente, mas não requer o uso subjacente fixado de um dado gerador aleatório. / We present two contributions to the field of parallel programming. The first contribution is theoretical: we introduce SIPS analysis, a novel approach to estimate the number of synchronizations performed during the execution of a parallel algorithm. Based on the concept of logical clocks, it allows us: on one hand, to deliver new bounds for the number of synchronizations, in expectation; on the other hand, to design more efficient parallel programs by dynamic adaptation of the granularity. The second contribution is pragmatic: we present an efficient parallelization strategy for pseudorandom number generation, independent of the number of concurrent processes participating in a computation. As an alternative to the use of one sequential generator per process, we introduce a generic API called Par-R, which is designed and analyzed using SIPS. Its main characteristic is the use of a sequential generator that can perform a “jump-ahead” directly from one number to another on an arbitrary distance within the pseudorandom sequence. Thanks to SIPS, we show that, in expectation, within an execution scheduled by work stealing of a “very parallel” program (whose depth or critical path is subtle when compared to the work or number of operations), these operations are rare. Par-R is compared with the parallel pseudorandom number generator DotMix, written for the Cilk Plus dynamic multithreading platform. The theoretical overhead of Par-R compares favorably to DotMix’s overhead, what is confirmed experimentally, while not requiring a fixed generator underneath.
50

Parallel algorithms and data structures for interactive applications / Algoritmos Paralelos e Estruturas de Dados para Aplicações Interativas / Algorithmes et Structures de Données Parallèles pour Applications Interactives

Toss, Julio January 2017 (has links)
La quête de performance a été une constante à travers l’histoire des systèmes informatiques. Il y a plus d’une décennie maintenant, le modèle de traitement séquentiel montrait ses premiers signes d’épuisement pour satisfaire les exigences de performance. Les barrières du calcul séquentiel ont poussé à un changement de paradigme et ont établi le traitement parallèle comme standard dans les systèmes informatiques modernes. Avec l’adoption généralisée d’ordinateurs parallèles, de nombreux algorithmes et applications ont été développés pour s’adapter à ces nouvelles architectures. Cependant, dans des applications non conventionnelles, avec des exigences d’interactivité et de temps réel, la parallélisation efficace est encore un défi majeur. L’exigence de performance en temps réel apparaît, par exemple, dans les simulations interactives où le système doit prendre en compte l’entrée de l’utilisateur dans une itération de calcul de la boucle de simulation. Le même type de contrainte apparaît dans les applications d’analyse de données en continu. Par exemple, lorsque des donnes issues de capteurs de trafic ou de messages de réseaux sociaux sont produites en flux continu, le système d’analyse doit être capable de traiter ces données à la volée rapidement sur ce flux tout en conservant un budget de mémoire contrôlé La caractéristique dynamique des données soulève plusieurs problèmes de performance tel que la décomposition du problème pour le traitement en parallèle et la maintenance de la localité mémoire pour une utilisation efficace du cache. Les optimisations classiques qui reposent sur des modèles pré-calculés ou sur l’indexation statique des données ne conduisent pas aux performances souhaitées. Dans cette thèse, nous abordons les problèmes dépendants de données sur deux applications différentes : la première dans le domaine de la simulation physique interactive et la seconde sur l’analyse des données en continu. Pour le problème de simulation, nous présentons un algorithme GPU parallèle pour calculer les multiples plus courts chemins et des diagrammes de Voronoi sur un graphe en forme de grille. Pour le problème d’analyse de données en continu, nous présentons une structure de données parallélisable, basée sur des Packed Memory Arrays, pour indexer des données dynamiques géo-référencées tout en conservant une bonne localité de mémoire. / A busca por desempenho tem sido uma constante na história dos sistemas computacionais. Ha mais de uma década, o modelo de processamento sequencial já mostrava seus primeiro sinais de exaustão pare suprir a crescente exigência por performance. Houveram "barreiras"para a computação sequencial que levaram a uma mudança de paradigma e estabeleceram o processamento paralelo como padrão nos sistemas computacionais modernos. Com a adoção generalizada de computadores paralelos, novos algoritmos foram desenvolvidos e aplicações reprojetadas para se adequar às características dessas novas arquiteturas. No entanto, em aplicações menos convencionais, com características de interatividade e tempo real, alcançar paralelizações eficientes ainda representa um grande desafio. O requisito por desempenho de tempo real apresenta-se, por exemplo, em simulações interativas onde o sistema deve ser capaz de reagir às entradas do usuário dentro do tempo de uma iteração da simulação. O mesmo tipo de exigência aparece em aplicações de monitoramento de fluxos contínuos de dados (streams). Por exemplo, quando dados provenientes de sensores de tráfego ou postagens em redes sociais são produzidos em fluxo contínuo, o sistema de análise on-line deve ser capaz de processar essas informações em tempo real e ao mesmo tempo manter um consumo de memória controlada A natureza dinâmica desses dados traz diversos problemas de performance, tais como a decomposição do problema para processamento em paralelo e a manutenção da localidade de dados para uma utilização eficiente da memória cache. As estratégias de otimização tradicionais, que dependem de modelos pré-computados ou de índices estáticos sobre os dados, não atendem às exigências de performance necessárias nesses cenários. Nesta tese, abordamos os problemas dependentes de dados em dois contextos diferentes: um na área de simulações baseada em física e outro em análise de dados em fluxo contínuo. Para o problema de simulação, apresentamos um algoritmo paralelo, em GPU, para computar múltiplos caminhos mínimos e diagramas de Voronoi em um grafo com topologia de grade. Para o problema de análise de fluxos de dados, apresentamos uma estrutura de dados paralelizável, baseada em Packed Memory Arrays, para indexar dados dinâmicos geo-localizados ao passo que mantém uma boa localidade de memória. / The quest for performance has been a constant through the history of computing systems. It has been more than a decade now since the sequential processing model had shown its first signs of exhaustion to keep performance improvements. Walls to the sequential computation pushed a paradigm shift and established the parallel processing as the standard in modern computing systems. With the widespread adoption of parallel computers, many algorithms and applications have been ported to fit these new architectures. However, in unconventional applications, with interactivity and real-time requirements, achieving efficient parallelizations is still a major challenge. Real-time performance requirement shows up, for instance, in user-interactive simulations where the system must be able to react to the user’s input within a computation time-step of the simulation loop. The same kind of constraint appears in streaming data monitoring applications. For instance, when an external source of data, such as traffic sensors or social media posts, provides a continuous flow of information to be consumed by an online analysis system. The consumer system has to keep a controlled memory budget and deliver a fast processed information about the stream Common optimizations relying on pre-computed models or static index of data are not possible in these highly dynamic scenarios. The dynamic nature of the data brings up several performance issues originated from the problem decomposition for parallel processing and from the data locality maintenance for efficient cache utilization. In this thesis we address data-dependent problems on two different applications: one on physically based simulations and another on streaming data analysis. To deal with the simulation problem, we present a parallel GPU algorithm for computing multiple shortest paths and Voronoi diagrams on a grid-like graph. Our contribution to the streaming data analysis problem is a parallelizable data structure, based on packed memory arrays, for indexing dynamic geo-located data while keeping good memory locality.

Page generated in 0.4759 seconds