1 |
ALKALINE HYDROGEN PEROXIDE PRETREATMENT FOR ITS USE IN AN ON-FARM BIOPROCESSING FACILITYGray, Mary Kathryn 01 January 2013 (has links)
Pretreatment is an essential step in biofuel production from lignocellulose. Disruption of the lignin structure gives enzymes and fermentation organisms access to long chains of cellulose and hemicellulose. For this project’s purposes, the pretreatment must work within the framework of an on-farm butanol bioprocessing facility. Alkaline hydrogen peroxide (AHP) is a delignification method that potentially provides several advantages. At the alkaline pH, powerful hydroxyl radicals are formed; which attack lignin. The objectives of this study were to determine if AHP removes substantial lignin for the feedstocks, corn stover, wheat straw, switchgrass and miscanthus, and to determine if AHP acts as a biocide? Compositional analysis determined if lignin was removed and HPLC data were used to determine whether or not Clostridium thermocellum hydrolyzed the pretreated material. Sterility was determined by plating the AHP material. All materials showed approximately 10% lignin removal with AHP. AHP increased structural carbohydrate concentrations for wheat straw, switchgrass and miscanthus. Corn stover showed no benefit from adding peroxide to a traditional alkaline pretreatment. AHP appears to suppress visible microbial growth for the first 24 hours after pretreatment. If AHP does not provide the additional hygienic effects, AHP does not provide a significant advantage over sodium hydroxide pretreatment.
|
2 |
Isolamento das frações celulósicas e hemicelulósicas do bagaço do sorgo sacarino (Sorghum bicolor (L.) Moench) e síntese de acetato de celulose. / Isolation of cellulosic and hemicellulosic fractions from Saccharine Sorghum Bagasse (Sorghum bicolor (L.) Moench) and Cellulose Acetate Synthesis.SILVA NETO, José Mariano da. 17 October 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-10-17T13:56:42Z
No. of bitstreams: 1
JOSÉ MARIANO DA SILVA NETO - DISSERTAÇÃO (PPGEQ) 2018.pdf: 2684747 bytes, checksum: fe802948822a1a5d8659189a540f5fba (MD5) / Made available in DSpace on 2018-10-17T13:56:42Z (GMT). No. of bitstreams: 1
JOSÉ MARIANO DA SILVA NETO - DISSERTAÇÃO (PPGEQ) 2018.pdf: 2684747 bytes, checksum: fe802948822a1a5d8659189a540f5fba (MD5)
Previous issue date: 2018-03-09 / Materiais lignocelulósicos representam uma importante matéria-prima para a produção de biocombustíveis e outros insumos químicos para comódites. Esses materiais quando derivados em celulose, hemicelulose e lignina geram matérias primas e subprodutos com valor agregado maior, a exemplo de acetato de celulose oriundo da celulose. No geral a cana-de-açúcar é a fonte de material lignocelulósico mais usada para obtenção desses derivados e frações. No entanto, alternativo a cana-de-açúcar, o sorgo sacarino tem recebido destaque pelo seu potencial lignocelulósico e por apresentar vantagens tanto do ponto de vista fotossintético como em velocidade de maturação e adaptação na região semiárida. Assim, o presente trabalho teve como principal objetivo o isolamento da celulose e hemicelulose do bagaço do sorgo sacarino e obtenção do acetato de celulose. Inicialmente, foi realizada a caracterização lignocelulósica do bagaço do sorgo sacarino para determinar os teores de celulose, hemicelulose e lignina, e em seguida foi realizado um pré-tratamento com peróxido de hidrogênio alcalino, visando estudar o efeito da temperatura, concentração de peróxido de hidrogênio e tempo reacional para solubilizar a lignina. A deslignificação gerou um resíduo sólido majoritariamente composto de celulose e um líquido majoritariamente composto de hemicelulose e lignina. A separação do resíduo sólido do líquido foi realizada por filtração, o filtrado submetido à adição de álcool etílico e precipitado em hemicelulose. A caracterização do bagaço in natura e pré-tratado, a celulose, hemicelulose e o acetato de celulose foi realizada através da espectroscopia de infravermelho (FTIR), difração de raios -X (DRX) e análises termogravimétricas (TG/DTG/DSC) e determinação do grau de substituição (GS) por via química para o acetato de celulose, visando a confirmação da acetilação. Por meio de análise estatística dos dados experimentais observou-se que as condições de pré-tratamento que geraram a maior solubilização da lignina (61,98%) e maior rendimento na extração da celulose (39,5%) foi na temperatura de 60°C, concentração de peróxido de 6% e tempo reacional de 4 horas bem como, a condição em que se obteve o maior rendimento para a hemicelulose (7,04%) foi na mesma temperatura e concentração de peróxido de hidrogênio, porém, no tempo reacional de 6h. A celulose obtida na melhor condição de pré-tratamento foi submetida a reação de acetilação homogênea para sintetizar o composto acetato de celulose em que as variáveis estudadas de síntese foram temperatura e tempo reacional de acetilação. O acetato de celulose foi obtido com um grau de substituição de 3,66 a uma temperatura de 25°C e tempo reacional de 24h. Os espectros de FTIR indicaram bandas características idênticas de materiais lignocelulósicos, o que demonstrou a eficiência do pré-tratamento com peróxido de hidrogênio alcalino. Através das análises de DRX observou-se a presença de picos característicos de materiais lignocelulósicos, a presença de regiões parcialmente cristalinas da celulose e amorfas para a hemicelulose. Quanto às análises termogravimétricas de TG e DTG foi possível concluir que os materiais isolados, celulose e hemicelulose, demonstraram perdas de massa semelhantes e que puderam também ser confirmados através das curvas de DSC. / Lignocellulosic materials represent an important raw material for biofuels production and other chemical inputs for comodites. These materials when derived in cellulose, hemicellulose and lignin generate raw materials and by-products with higher added value, such as cellulose acetate derived from cellulose and xylose obtained from hemicellulose. In general sugarcane is the source of lignocellulosic material most used to obtain these derivatives and fractions. However, alternative to sugarcane, saccharine sorghum has been highlighted by its lignocellulosic potential and because it presents advantages from the viewpoint of photosynthesis and maturation speed and adaptation in the semi-arid region. Thus, the main objective of the present work was the isolation of cellulose and hemicellulose from saccharin sorghum bagasse and the production of cellulose acetate. Firstly, the lignocellulosic characterization of saccharin sorghum bagasse was carried out to determine the cellulose, hemicellulose and lignin contents, followed by a pretreatment with alkaline hydrogen peroxide, aiming to study the effect of temperature, peroxide concentration of hydrogen and reaction time to solubilize the lignin. The delignification generated a solid residue mostly composed of cellulose and a liquid mostly composed of hemicellulose and lignin. Separation of the solid residue from the liquid was carried out by filtration, the filtrate submitted to the addition of ethyl alcohol and precipitated into hemicellulose. The bagasse in natura and pre-treated, cellulose and hemicellulose extract and cellulose acetate were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TG / DTG / DSC). By means of statistical analysis of the experimental data, it was observed that the pretreatment conditions that generated the highest solubilization of lignin (61.98%) and higher yield in the cellulose extraction (39.5%) were at the temperature of 60 ° C, peroxide concentration of 6% and reaction time of 4 hours, as well as the condition in which the highest yield for hemicellulose (7.04%) was obtained at the same temperature and concentration of hydrogen peroxide, however, the reaction time was 6h. The cellulose obtained in the best pre-treatment condition was submitted to a homogeneous acetylation reaction to synthesize the cellulose acetate compound in which the studied variables of synthesis were temperature and reaction time of acetylation. Cellulose acetate was obtained with a substitution degree of 3.66 at a temperature of 25 °C and reaction time of 24h. The FTIR spectra indicated the efficiency characteristics of identical lignocellulosic materials, which demonstrated the pretreatment efficiency with alkaline hydrogen peroxide. Through the XRD analyzes the presence of characteristic peaks of lignocellulosic materials, the presence of partially crystalline cellulose regions and amorphous to hemicellulose were observed. Regarding the thermo gravimetric analyzes of TG and DTG, it was possible to conclude that the isolated materials, cellulose and hemicellulose, showed similar mass losses and that could also be confirmed through the DSC curves.
|
3 |
Estudo do prÃ-tratamento do bagaÃo de caju com perÃxido de hidrogÃnio alcalino para a produÃÃo de etanol. / Study of pretreatment of cashew apple bagasse with alkaline hydrogen peroxide to ethanol production.Jessyca Aline da Costa Correia 22 February 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / O prÃ-tratamento do bagaÃo de caju (BC) com perÃxido de hidrogÃnio alcalino (PHA) e a hidrÃlise enzimÃtica do BC-PHA foram avaliados visando a conversÃo de celulose e hemicelulose em aÃucares fermentescÃveis. Primeiramente foram avaliados os efeitos da concentraÃÃo de perÃxido de hidrogÃnio a pH 11,5, a carga de biomassa e o tempo do prÃ-tratamento a 35 ÂC e 250 rpm, na hidrÃlise enzimÃtica, da biomassa prÃ-tratada, com celulase comercial a uma carga de 11,4 FPU/gcelulose. O BC utilizado neste estudo continha 20,56  20,19% de celulose, 10,17  0,89% de hemicelulose e lignina 35,26  0,90%. O prÃ-tratamento resultou numa reduÃÃo no teor de lignina dos sÃlidos residuais. A melhor condiÃÃo de prÃ-tratamento com perÃxido de hidrogÃnio alcalino obtida foi 4,3% v/v de H2O2, pH 11,5, 5% m/ v de BC a 35 ÂC por 6 h, os sÃlidos resultantes dos prÃ-tratamentos foram denominados de BC-PHA. ApÃs a melhor condiÃÃo do prÃ-tratamento ser encontrada, foi avaliado o efeito da combinaÃÃo de quatro enzimas comerciais na hidrÃlise enzimÃtica. A combinaÃÃo das enzimas complexo celulase e β-glicosidase, na proporÃÃo de 0,61:0,39, com carga de 30 FPU/gCAB-PHA e 66 CBU/gCAB-PHA, respectivamente, proporcionou a maior concentraÃÃo de aÃÃcares. O maior rendimento de aÃÃcar foi obtido com a carga de celulose de 4 gcelulose/100 mL, com rendimento de glicose de 511,68 mg/gCAB-AHP (36 g/L) e rendimento de xilose de 237,8 mg/gCAB-AHP (13 g/L). O lÃquido obtido apÃs hidrÃlise enzimÃtica foi utilizado para avaliar a produÃÃo de etanol utilizando os micro-organismos Saccharomyces cerevisiae, Kluyveromyces marxianus ATCC 36907 e K. marxianus CCA510 a 30 ÂC e 150 rpm. A concentraÃÃo de etanol foi semelhante para todos os micro-organismos (aproximadamente 15 g/L). No entanto, a levedura S. cerevisiae apresentou maior produtividade. A fraÃÃo sÃlida obtida apÃs o prÃ-tratamento foi utilizada no estudo de sacarificaÃÃo e fermentaÃÃo simultÃneas (SFS), realizado utilizando as enzimas complexo celulase (30 FPU/gCAB-AHP) e β-glicosidase (66 CBU/gCAB-AHP) a 45 ÂC e 150 rpm avaliando as leveduras K. marxianus ATCC 36907 e K. marxianus CCA510. A concentraÃÃo de etanol obtida por SFS do BC-PHA por K. marxianus ATCC36907 atingiu 18 g/L com 48 h de processo, correspondendo a um rendimento de 98% de etanol com base no teor de celulose disponÃvel. Os resultados mostram que o perÃxido de hidrogÃnio em meio alcalino à eficaz para o tratamento prÃvio de BC e o sÃlido obtido pode ser utilizado na produÃÃo de etanol por SFS. / Alkaline H2O2 pretreatment (AHP) and enzymatic saccharification were evaluated for conversion of cashew apple bagasse (CAB) cellulose and hemicellulose to fermentable sugars. First, the effects of the concentration of hydrogen peroxide at pH 11.5, the biomass loading and the pretreatment duration performed at 35 ÂC and 250 rpm were evaluated after the subsequent enzymatic saccharification of the pretreated biomass using a commercial cellulase enzyme with low load. The CAB used in this study contained 20.56  20.19% cellulose, 10.17  0.89% hemicellulose and 35.26  0.90% lignin. The pretreatment resulted in a reduced lignin content in the residual solids. The best condition pretreatment from CAB was obtained with alkaline hydrogen peroxide (4.3% v/v H2O2), pH 11.5, 35 ÂC, 5% w/v CAB for 6 h, these solids were named of CAB-AHP. After, the effect of the combination of four commercial enzymes were evaluated. The combination of the enzymes, cellulase complex and β-glucosidase, on the proportion of 0.61:0.39 with load of 30 FPU/gCAB-AHP and 66 CBU/gCAB-AHP, respectively, was found to achieved high monomeric sugar release. The higher sugar yield was in the assays with 4 gcellulose/100 mL obtained glucose yield of 511.68 mg/gCAB-AHP (36 g/L) and xylose yield of 237.8 mg/gCAB-AHP (13 g/L). The liquid obtained after hydrolysis enzymatic was used in separate hydrolysis and fermentation (SHF) process with Saccharomyces cerevisiae, Kluyveromyces marxianus ATCC 36907 and K. marxianus CCA510 at 30 ÂC and 150 rpm. The ethanol concentration was similar for all microorganism (approx 15 g/L). However the yeast S. cerevisiae showed higher productivity. Also, the solid fraction obtained of pretreatment was used in the study of simultaneous saccharification and fermentation (SSF). SSF was conducted using cellulose complex enzyme (30 FPU/gCAB-AHP) and β-glucosidase enzyme (66 CBU/gCAB-AHP) at 45 ÂC and 150 rpm and evaluated the yeasts K. marxianus ATCC 36907 and K. marxianus CCA510. The ethanol concentration in SSF from CAB-AHP using K. marxianus ATCC36907 reached 18 g/L with 48 h, corresponding to an ethanol yield of 98% based on cellulose content. The results show that alkaline hydrogen peroxide is effective for the pretreatment of CAB and this solid can be used on the ethanol production by SSF.
|
4 |
OPTIMAL USES OF BIOMASS RESOURCES IN DISTRIBUTED APPLICATIONSJackson, Joshua J. 01 January 2015 (has links)
Biomass production is spatially distributed resulting in high transportation costs when moving dedicated biomass crops and crop residues. A multifaceted approach was taken to address this issue as the low bulk and energy density of biomass limits transportation efficiency. Two systems were analyzed for the conversion of biomass into a denser feedstock applicable to on-farm use. Pelletization was able to densify the material into a solid fuel. Using a pilot scale flat ring pellet mill, the density of the material was able to be increased to at least 4.4 times that of uncompressed material. Pellet durability was found to be strongly related to the moisture content of the material entering the mill. Unlike with ring roller pellet mills, a higher durability was typically seen forbiomass materials with a preconditioned moisture content of 20% (w.b.).
From a liquid fuel standpoint, the conversion of lignocellulosic material into biobutanol on-farm was the second method investigated. For the pretreatment of biomass, alkaline hydrogen peroxide spray was demonstrated to be an effective enhancer of saccharification. The viability of on-farm biobutanol preprocessing bunker facilities within Kentucky was analyzed using Geographic Information systems (GIS) to specifically address transportation related factors. The spatial variability of corn field production, size, and location were resolved by utilizing ModelBuilder to combine the various forms of data and their attributes. Centralized and Distributed preprocessing with Centralized refining (DC) transportation systems were compared. Centralized was defined as transport of corn stover directly from the field to a refinery. Distributed-Centralized was specified as going from the field to the biobutanol bunker with corn stover and from the bunker to the refinery with a dewatered crude biobutanol solution. For the DC design, the location of the field and refinery were fixed with the biobutanol bunker location being variable and dependent upon differing maximum transportation (8-80 km) cutoffs for biomass transport from the field to biobutanol bunkers. The DC designs demonstrated a lower (38 - 59%) total transportation cost with a reduced fuel use and CO2 emissions compared to the centralized system.
|
5 |
Estudo dos processos de obtenção de açúcares redutores totais (ART) a partir do bagaço de frutas / Study of obtaining processes of total reducing sugars (TRS) from fruits bagasseMendes, Thais Pontes Pereira 02 December 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-04T13:37:19Z
No. of bitstreams: 2
Dissertação - Thais Pontes Pereira Mendes - 2014.pdf: 3157562 bytes, checksum: 078261866461b3bb0af2d57b058e0a47 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-04T13:40:15Z (GMT) No. of bitstreams: 2
Dissertação - Thais Pontes Pereira Mendes - 2014.pdf: 3157562 bytes, checksum: 078261866461b3bb0af2d57b058e0a47 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-05-04T13:40:15Z (GMT). No. of bitstreams: 2
Dissertação - Thais Pontes Pereira Mendes - 2014.pdf: 3157562 bytes, checksum: 078261866461b3bb0af2d57b058e0a47 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-12-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Given the growing global interest in clean, renewable sources of energy, the
lignocellulosic materials stand out as a potential alternative, since it does not
compete with food production and are rich in sugars that can serve as a feedstock for
ethanol production. Based on this context, this work aimed to study the pre-treatment
and acid hydrolysis as the supply of total reducing sugars (TRS) from mango,
passion fruit and pineapple bagasses (lignocellulosic materials). These materials,
derived from the juice industry, underwent two chemical pretreatments with calcium
hydroxide and alkaline hydrogen peroxide. The study was conducted using a 23
factorial design, using the variables of chemical reagent concentration, reaction time
and temperature in order to find the best conditions that maximized the amount of
available fermentable sugars. In the next stage acid hydrolysis of the study was also
performed based on a 22 factorial design, using the concentration ratio and bagasse /
volume of acid (solid: liquid - S: L) variables. It was found that the two studied
pretreatments, mango bagasse was biomass provided more reducing sugars.
Conditions which maximized the response were 24 h, 20 ° C and 1% w / v to pretreatment
with alkaline hydrogen peroxide and 20 h, 40 ° C, and 0.01 g / mL for pretreatment
with hydroxide calcium. These values were lower than those studied in
planning in both pre-treatments. TSR was obtained 0.312 g / g of biomass
pretreatment with calcium hydroxide and TSR 0.313 g / g of biomass pre-treatment
with alkaline hydrogen peroxide. In the study of the hydrolysis, the pre-treatment with
alkaline hydrogen peroxide proved to be more advantageous as it is used lowest acid
concentration (0.5%) and higher ratio S: L (1g: 10 mL) producing higher
concentrations TSR . / Diante do crescente interesse mundial por fontes de energia limpa e renovável, os
materiais lignocelulósicos se destacam como uma alternativa em potencial, uma vez
que não competem com a produção de alimentos e são ricos em açúcares que
podem servir de matéria-prima na produção de etanol. Baseado neste contexto, este
trabalho teve como objetivo estudar os pré-tratamentos e hidrólise ácida quanto ao
fornecimento de açúcares redutores totais (ART) a partir dos bagaços de manga,
maracujá e abacaxi (materiais lignocelulósicos). Os bagaços, oriundos de indústria
de suco, foram submetidos a dois pré-tratamentos químicos, com hidróxido de cálcio
e com peróxido de hidrogênio. O estudo foi conduzido através de um planejamento
fatorial 23, utilizando-se as variáveis concentração do reagente químico, tempo de
reação e temperatura, a fim de encontrar as melhores condições que maximizassem
a quantidade de açúcares fermentescíveis disponibilizada. Na etapa seguinte, o
estudo da hidrólise ácida também foi realizado baseado num planejamento fatorial
22, utilizando-se as variáveis concentração e razão bagaço/volume de ácido
(sólido:líquido - S:L). Verificou-se que nos dois pré-tratamentos estudados, o bagaço
da manga foi a biomassa que mais forneceu açúcares redutores. As condições que
maximizaram a resposta foram 24 h, 20 °C e 1% m/v para o pré-tratamento com
peróxido de hidrogênio alcalino e 20 h, 40 °C e 0,01 g/ mL para o pré-tratamento
com hidróxido de cálcio. Esses foram os menores valores estudados no
planejamento em ambos os pré-tratamentos. Obteve-se ART de 0,312 g/g de
biomassa no pré-tratamento com hidróxido de cálcio e ART de 0,313 g/g de
biomassa no pré-tratamento com peróxido de hidrogênio alcalino. No estudo da
hidrólise, o pré-tratamento com peróxido de hidrogênio alcalino se mostrou mais
vantajoso, pois se utilizou menor concentração de ácido (0,5%) e maior razão S:L (1
g: 10 mL) produzindo maiores concentrações de ART.
|
Page generated in 0.0955 seconds