81 |
Synthèse de carbènes N-hétérocycliques chiraux et applications en catalyse asymétrique / Synthesis of new chiral N-heterocyclic carbènes and applications in asymmetric catalysisThomasset, Amélia 18 October 2013 (has links)
Ce travail de thèse porte dans un premier temps sur la synthèse de nouveaux sels d’azolinium chiraux précurseurs de carbènes N-hétérocycliques. Deux nouvelles familles de sels ont été préparées à partir de la L-proline. Nous avons pu caractériser les NHC issus de ces sels, par la formation des dimères, des thiones et des complexes de rhodium correspondants. Dans un second temps, ces nouveaux sels d’azolinium ont été évalués dans la réaction d’addition conjuguée de réactifs de Grignard sur des cétones α,β insaturées. Les résultats ont montré de très bonnes activités catalytiques, et de très bonnes régiosélectivités. Les énantiosélectivités obtenues sont encourageantes. Ensuite, ces catalyseurs ont été engagés dans la réaction de substitution allylique. Une bonne activité catalytique a aussi été observée malgré des régiosélectivités et des énantiosélectivités modérées. Enfin, ces sels ont été employés comme précurseurs de NHC pour la réduction asymétrique de cétones aromatiques par transfert d’hydrogène. Les complexes formés se sont montrés actifs mais non énantiosélectifs. / This work deals with, at first, the synthesis of new chiral azolinium precursors to N-heterocyclic carbenes. Two families have been prepared from the L-proline. The structures of some NHC dimmers, thiones and [Rh-NHC] complexes were characterized and confirmed by different analysis methods.Secondly, these new salts were evaluated in the conjugate addition reaction of Grignard reagents to α,β-unsaturated ketones. The results obtained shown very good catalytic activity, excellent regioselectivity with moderate enantioselectivity. They were also involved in the allylic substitution reaction. Good catalytic activity was observed despite moderate regioselectivity and enantioselectivity. Finally, these azolinium salts were employed as NHC precursors for the asymmetric transfer hydrogenation of aromatic ketones. The complexes proved to be active, but non enantioselective.
|
82 |
Gamma-Borylated allylic acetates as 3 carbons functionalized units : synthesis and applications / Acétates allyliques Gamma-borylés comme unités fonctionnalisés 3-carbone : synthèse et applicationsKukkadapu, Krishna Kishore 06 June 2013 (has links)
Les boranes vinyliques,les acides boroniques vinyliques et les boronates vinyliques sont des organoboranes où la différence d'électronégativité entre le carbone et le bore est très faible[C (2. 55)-B (2. 04)] et la liaison entre ces deux atomes est donc peu polaire. Les propriétés caractéristiques du bore permettent de réaliser une grande variété de réactions dans différentes conditions. Beaucoup de groupes de recherche ont exploré les applications synthétiques des organoboranes en synthèse organique. Par exemple les boranes vinyliques peuvent être transformés en les alcènes correspondants par protonolyse,ils peuvent être facilement oxydés avec H2O2 en présence de base(addition d'un groupe hydroxyle sur la double liaison) pour donner des produits cis-anti Markovnikov. Ils peuvent aussi subir des réactions d'addition pour donner des alcools allyliques ou des cycloadditions [4+2] pour former deux nouvelles liaisons carbone- carbone via des réactions de Diels-Alder. Les acides vinylboroniques peuvent être transformés en halogénures vinyliques via une halogénolyse,réagir via une réaction de cyclisation radicalaire utilisant la méthode catalytique de Corey en présence d'un initiateur de réaction radicalaire pour obtenir des diols 1,3- ou 1,4. Ils peuvent participer à des réactions de couplage au palladium de type Suzuki pour former de nouvelles liaisons carbone-carbone. Ils peuvent réagir avec des anhydrides pour donner différentes cétones insaturatées via des catalyses au palladium ou au rhodium . Les acides vinylboroniques ont aussi été utilisés pour la formation de nouvelles liaisons carbone-azote , carbone-oxygène , carbone-fluor via des réactions catalysées au palladium ou au cuivre. Les boronates vinyliques ont été employés pour former de nouvelles liaisons carbone-carbone via des couplages de Suzuki- Miyaura. Ils sont employés dans la réaction multicomposant de Petasis pour donner des hétérocycles azotés fonctionnalisés. Ils participent aux réactions de métathèse croisée pour donner des boronates vinyliques hautement fonctionnalisés , ils réagissent facilement avec des carbènes générés à partir de diazos pour donner des cyclopropanes et ceci à travers des catalyses au palladium et au rhodium. Les boronates vinyliques, en réaction avec des oxides de nitrile subissent des réactions de cycloaddition 1,3-dipolaire pour donner des isoxazoles . Les boronates vinyliques ont aussi été utilisés comme nucléophiles en réaction d'allylation avec catalyse au cuivre ou au palladium. Les transformations précédentes des organoboranes fournissent des précurseurs importants pour la synthèse totale de molécules bioactives complexes qui ont été utilisées dans les domaines de la médecine, de l'agrochimie, des composés pharmaceutiques et de la chimie fine. Les organoboranes peuvent être synthétisés facilement et ceci les rend particulièrement précieux comme intermédiaires clés en synthèse organique. / Vinylboranes, vinylboronic acids and vinylboronates are organoboranes where the electro negativity difference between carbon and boron bond is very low [C (2. 55)-B (2. 04)] and the bond between them is less polar. The characteristic features of borane allow performing wide range of reactions under different conditions. Several research groups explored the synthetic applications of organoboranes in organic synthesis. For example vinylboranes can be transformed to their corresponding alkenes via protonolysis,can be easily oxidized by hydrogen peroxide in presence of base(addition of hydroxy group at double bond)to result cis-,anti Markovnikov products also participate in addition reactions to give allylic alcohols,they undergo[4+2]cyclo adition reactions to form two new carbon- carbon bonds via Diels- Alder reaction. Vinylboronic acids can be transformed to vinylhalides via halogenolysis,react via boron-tethered radical cyclisation using Corey’s catalytic tributyl-stannane method in presence of radical initiator to afford 1,3- or 1,4-diols,participates in palladium catalyzed Suzuki cross coupling reactions to give characteristic carbon-carbon bond,react with anhydrides to result various unsaturated ketones via palladium and rhodium catalysis,vinylboronic acids were also used for the synthesis of new carbon-nitrogen,carbon- oxygen, carbon-fluoine bonds via palladium and copper catalysis. Vinylboronates were used to synthesize new carbon-carbon bonds via Suzuki- Miyaura cross coupling reaction under palladium catalysis, participates in Petasis multicomponent reaction to give functionalized nitrogen based heterocycles, they undergo olefin cross-metathesis to afford highly functionalized vinylboronate deivaives, readily react with carbene generated from diazo compounds to afford cyclopropane derivatives under palladium and rhodium catalysis. Vinylboronates on treatment with arylnitrile oxides undergo 1,3-dipolar cyclo addition reaction to give isoxazole derivatives, vinylboronates were also used as nucleophiles in allylation with copper and palladium catalysisThe above transformations of organoboranes provide important precursors for building complex bioactive molecules which were developed as medicine, agrochemicals, pharmaceuticals and fine chemicals. Organoboranes can be easily synthesized and this easy access for preparation made them useful key intermediates for organic synthesis. Vinylboranes can be synthesized via hydroboration of alkynes with alkylboranes,vinylboronic acids can be synthesized via hydroboration of alkynes with alkoxyboranes followed by hydrolysis where as vinylboronates were synthesized from organometallic reagents by transmetallation with trimethyl orthoborate,also prepared from hydroboration of alkynes with alkoxyboranes. Grafting a substitution in the allylic position of vinyl boronates confers to these units a high degree of versatility to their use in organic synthesis. -substitue.
|
83 |
Synthetic Studies Towards the Tridachione Family of Marine Natural ProductsKasprzyk, Milena, milena.kasprzyk@freehills.com January 2008 (has links)
Since the middle of the 20th century, significant interest has evolved from the scientific community towards the polypropionate family of marine natural products. A number of these compounds have been shown to possess significant biological activity, and this property, as well as their structural complexity, has driven numerous efforts towards their synthesis. The first chapter provides an introduction into the world of polypropionates, with a discussion on synthetic studies into a number of members of the tridachiapyrone family. Fundamental synthetic concepts utilised in this thesis towards the preparation of polyketides are also described, with a focus on their application towards the synthesis of 9,10-deoxytridachione, anti tridachiahydropyrone and syn tridachiahydropyrone.
Chapter 2 describes the work undertaken towards the total synthesis of 9,10-deoxytridachione. The novel tandem conjugate addition-Dieckmann condensation of complex enones developed previously in the Perkins group was used to generate anti methylated cyclohexenones as key synthetic intermediates. The conversion of the cyclohexenones into the corresponding cyclohexadienes via allylic alcohols was attempted, utilising a Grignard-mediated reaction to achieve the selective 1,2-reduction. Studies into the Grignard-mediated reduction were also undertaken on seven additional cyclohexenones, in order to investigate the utility and scope of the reaction.
The extension of the methodology previously developed for the synthesis of cyclohexenones is the subject of Chapter 3. This section describes investigations into the synthesis of stereochemically-diverse cyclohexenones from complex enones. The conjugate addition-Dieckmann condensation strategy was extended successfully towards the synthesis of a syn methylated cyclohexenone, which allowed the synthesis of the proposed true structure of tridachiahydropyrone to be pursued.
The methodology developed in Chapter 3 was utilised in Chapter 4 to synthesise a model system of syn tridachiahydropyrone. A comparative analysis of the NMR data of the syn model, an anti model and anti tridachiahydropyrone with the natural product indicated that the true structure of tridachiahydropyrone may indeed have syn stereochemistry. The synthesis of syn tridachiahydropyrone was attempted, and to this end a suitable cyclohexanone was successfully synthesised. However, the subsequent methylation-elimination cascade failed to furnish the desired syn methylated cyclohexenone, producing only an anti methylated cyclohexanone. The stereochemistry of the methylation was deduced using high and low variable temperature NMR coupled with selective irradiation NOESY.
|
84 |
Development of New Chiral Bicyclic Ligands : Applications in Catalytic Asymmetric Transfer Hydrogenation, Epoxidations, and Epoxide RearrangementsGayet, Arnaud January 2005 (has links)
<p>This thesis describes the synthesis and application of new chiral bicyclic ligands and their application in asymmetric catalysis. The studies involved: [i] The development of novel chiral bicyclic amino sulfur ligands and their use in transfer hydrogenation. [ii] The development of the kinetic resolution of racemic epoxide through the use of chiral lithium amides. [iii] The synthesis and application of chiral bicyclic amine in the organocatalysed epoxidation of alkenes. [iv] Development and application of new chiral diamine ligands in the rearrangement of epoxides into allylic alcohols.</p><p>[i] The preparation of two-series of amino thiol ligands based on the structure of camphor is described, together with their application in the iridium-catalysed asymmetric transfer hydrogenation of acetophenone using isopropanol as the hydrogen source. Excellent activity and good enantioselectivity have been achieved using 2 mol% of chiral ligand in combination with [IrCl(COD)]2.</p><p>[ii] The chiral diamines (1S,3R,4R)-3-(pyrrolidine-1-ylmethyl)-2-aza-bicyclo[2.2.1]heptane and its (2R,5R)-dimethylpyrrolidine derivative were applied to the kinetic resolution of a variety of racemic 5-7 membered cycloalkene oxides with lithium diisopropylamide (LDA) as the bulk base. Using 5 mol% of the chiral diamines, both unreacted epoxides and allylic alcohols could be produced in enantiomeric excess up to 99%.</p><p>[iii] The synthesis of chiral bicyclic amines and their use in the organocatalysed epoxidation of alkene has been described. Using a substoichiometric amount of the chiral amines and aldehydes as ligands precursors, with Oxone® as oxidant, a good activity but moderate enantioselectivity was observed for the epoxidation of trans-stilbene. </p><p>[iv] The preparation of 6-substituted-7-bromo-aza-bicyclo[2.2.1]heptanes via nucleophilic addition of organocopper reagents to 3-bromo-1-azoniatricyclo[2.2.1.0]heptyle bromide has been described. These compounds have been utilised as chiral building blocks in the preparation of novel chiral diamine ligands, which have been successfully applied to the catalysed asymmetric rearrangement of epoxide into the corresponding allylic alcohol.</p>
|
85 |
Chiral Pyridine-Containing Ligands for Asymmetric Catalysis. Synthesis and ApplicationsRahm, Fredrik January 2003 (has links)
This thesis deals with the design and syntheses of chiral,enantiopure pyridinecontaining ligands and their applicationsin asymmetric catalyis. Chiral pyridyl pyrrolidine ligands and pyridyl oxazolineligands were synthesized and employed in thepalladium-catalysed allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate. Theinfluence of the steric properties of the ligands wereinvestigated. Ditopic ligands, containing crown ether units as structuralelements, were synthesized and some of the ligands were used asligands in the palladiumcatalysed allylic alkylation of1,3-diphenyl-2-propenyl acetate with dimethyl malonate. A smallrate enhancement was observed, compared with analogous ligandslacking the crown ether unit, when these ditopic ligands wereused in dilute systems. A modular approach was used to synthesize chiralenantiomerically pure pyridyl alcohols and C2-symmetric2,2-bipyridines, with the chirality originating from thechiral pool. Electronic and steric properties of the compoundswere varied and they were used as ligands in theenantioselective addition of diethylzinc to benzaldehyde. Thesense of asymmetric induction was found to be determined by theabsolute configuration of the carbinol carbon atom. Theelectronic properties of the ligands had a minor influence onthe levels of enantioselectivity induced by the ligands. Chiral pyridyl phosphinite ligands and pyridyl phosphiteligands were synthesized from the pyridyl alcohols andevaluated as ligands in palladiumcatalysed allylic alkylations.With the phosphinite ligands, the sense of chiral induction wasfound to be determined by the absolute configuration of theformer carbinol carbon atom. A kinetic resolution of theracemic starting material was observed with one of thephosphite ligands. Moderate enantioselectivities wereachieved. <b>Kewords:</b>asymmetric catalysis, chiral ligand, chiralpool, oxazoline, crownether, ditopic receptor, bipyridine,pyridyl alcohol, modular approach, P,Nligand, diethylzinc,allylic alkylation.
|
86 |
Development of New Chiral Bicyclic Ligands : Applications in Catalytic Asymmetric Transfer Hydrogenation, Epoxidations, and Epoxide RearrangementsGayet, Arnaud January 2005 (has links)
This thesis describes the synthesis and application of new chiral bicyclic ligands and their application in asymmetric catalysis. The studies involved: [i] The development of novel chiral bicyclic amino sulfur ligands and their use in transfer hydrogenation. [ii] The development of the kinetic resolution of racemic epoxide through the use of chiral lithium amides. [iii] The synthesis and application of chiral bicyclic amine in the organocatalysed epoxidation of alkenes. [iv] Development and application of new chiral diamine ligands in the rearrangement of epoxides into allylic alcohols. [i] The preparation of two-series of amino thiol ligands based on the structure of camphor is described, together with their application in the iridium-catalysed asymmetric transfer hydrogenation of acetophenone using isopropanol as the hydrogen source. Excellent activity and good enantioselectivity have been achieved using 2 mol% of chiral ligand in combination with [IrCl(COD)]2. [ii] The chiral diamines (1S,3R,4R)-3-(pyrrolidine-1-ylmethyl)-2-aza-bicyclo[2.2.1]heptane and its (2R,5R)-dimethylpyrrolidine derivative were applied to the kinetic resolution of a variety of racemic 5-7 membered cycloalkene oxides with lithium diisopropylamide (LDA) as the bulk base. Using 5 mol% of the chiral diamines, both unreacted epoxides and allylic alcohols could be produced in enantiomeric excess up to 99%. [iii] The synthesis of chiral bicyclic amines and their use in the organocatalysed epoxidation of alkene has been described. Using a substoichiometric amount of the chiral amines and aldehydes as ligands precursors, with Oxone® as oxidant, a good activity but moderate enantioselectivity was observed for the epoxidation of trans-stilbene. [iv] The preparation of 6-substituted-7-bromo-aza-bicyclo[2.2.1]heptanes via nucleophilic addition of organocopper reagents to 3-bromo-1-azoniatricyclo[2.2.1.0]heptyle bromide has been described. These compounds have been utilised as chiral building blocks in the preparation of novel chiral diamine ligands, which have been successfully applied to the catalysed asymmetric rearrangement of epoxide into the corresponding allylic alcohol.
|
87 |
Impact of Secondary Interactions in Asymmetric CatalysisFrölander, Anders January 2007 (has links)
This thesis deals with secondary interactions in asymmetric catalysis and their impact on the outcome of catalytic reactions. The first part revolves around the metal-catalyzed asymmetric allylic alkylation reaction and how interactions within the catalyst affect the stereochemistry. An OH–Pd hydrogen bond in Pd(0)–π-olefin complexes of hydroxy-containing oxazoline ligands was identified by density functional theory computations and helped to rationalize the contrasting results obtained employing hydroxy- and methoxy-containing ligands in the catalytic reaction. This type of hydrogen bond was further studied in phenanthroline metal complexes. As expected for a hydrogen bond, the strength of the bond was found to increase with increased electron density at the metal and with increased acidity of the hydroxy protons. The second part deals with the use of hydroxy- and methoxy-containing phosphinooxazoline ligands in the rhodium- and iridium-catalyzed asymmetric hydrosilylation reaction. The enantioselectivities obtained were profoundly enhanced upon the addition of silver salts. This phenomenon was explained by an oxygen–metal coordination in the catalytic complexes, which was confirmed by NMR studies of an iridium complex. Interestingly, the rhodium and iridium catalysts nearly serve as pseudo-enantiomers giving products with different absolute configurations. The final part deals with ditopic pyridinobisoxazoline ligands and the application of their metal complexes in asymmetric cyanation reactions. Upon complexation, these ligands provide catalysts with both Lewis acidic and Lewis basic sites, capable of activating both the substrate and the cyanation reagent. Lanthanide and aluminum complexes of these ligands were found to catalyze the addition of the fairly unreactive cyanation reagents ethyl cyanoformate and acetyl cyanide to benzaldehyde, whereas complexes of ligands lacking the Lewis basic coordination sites failed to do so. / QC 20100709
|
88 |
Asymmetric [2,3]-Sigmatropic Rearrangement of Allylic Ammonium YlidesBlid, Jan January 2005 (has links)
The thesis describes the realization of an asymmetric [2,3]-sigmatropic rearrangement of achiral allylic amines. It is divided into two parts; the first part deals with the development of a Lewis acid-mediated [2,3]-sigmatropic rearrangement and the second the asymmetric version thereof. Quaternization of an -amino amide with various Lewis acids established BBr3 and BF3 to be the most appropriate ones. Various allylic amines were subsequently rearranged into the corresponding homoallylic amines in good to excellent syn-diastereoselectivities, revealing the endo-transition state to be the preferred pathway. The structures of the intermediate Lewis acid-amine complexes were confirmed by NMR spectroscopy studies and DFT calculations. Based on this investigation a chiral diazaborolidine was chosen as Lewis acid and was shown to efficiently promote the asymmetric [2,3]-sigmatropic rearrangement furnishing homoallylic amines in good yields and excellent enantiomeric excesses. In contrast to the achiral rearrangement mediated by BBr3 and BF3, the asymmetric version gave the opposite major diastereomer, revealing a preference for the exo-transition state in the asymmetric rearrangement. To account for the observed selectivities, a kinetic and thermodynamic pathway was presented. On the basis of a deuterium exchange experiment on a rearranged Lewis acid-amine complex and an NMR spectroscopic investigation, the kinetic pathway was shown to be favored. / QC 20100927
|
89 |
Chiral Bisphosphinites For Asymmetric CatalysisSharma, Rakesh Kumar 01 1900 (has links)
Chiral bisphosphinites are well-documented alternatives for chiral bisphosphines as ligands that can be exploited in various asymmpetric syntheses. Particularly, vicinal biarylphophinite ligands give a seven membered chelate ring similar to the successful DIOP on coordination to the metal. RajanBabu and coworkers have described asymmetric bisphosphinites obtained by functionalization of sugars and have shown their utility in enantioselective hydrogenation, hydrovinylation and hydrocynation reactions. Despite the interesting reactions demonstrated by bisphosphinites, not much attention has been paid to their synthesis and catalysis. This is probably due to the known moisture and oxygen sensitivity that makes their use limited.
In the present thesis, a series of C1 an C2 symmetric bisphosphinite complexes of Pd(II) and Pt(II) have been synthesized directly from various naturally occurring chiral alcohols using a modified template method. A number of asymmetric catalytic reactions have been developed such as allylation of imines, allylation of aldehydes, allylic allylation, allylic alkylation, hydrosilylation of alkenes and regioselective allylation of oxiranes. Allylation of imines was carried out in essentially neutral conditions using Pd(II) catalysts and water was shown to accelerate the reaction. Interestingly acetic acid was required as a promoter in asymmetric allylation of cinnamaldehyde in the Pt(II) catalyzed reaction whereas water was a deterrent. Hydrosilylation reaction was carried out in solvent free conditions with high turnover numbers (.1000).
Ascorbic acid based complexes produced the highest enantioselectivity for the asymmetric allylic alkylation reaction (97 % ee) and hydrosilylation of styrene (98% ee). These enantioselectivity results are the best obtained using ligands directly prepared from natural products.
|
90 |
Chiral Pyridine-Containing Ligands for Asymmetric Catalysis. Synthesis and ApplicationsRahm, Fredrik January 2003 (has links)
<p>This thesis deals with the design and syntheses of chiral,enantiopure pyridinecontaining ligands and their applicationsin asymmetric catalyis.</p><p>Chiral pyridyl pyrrolidine ligands and pyridyl oxazolineligands were synthesized and employed in thepalladium-catalysed allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate. Theinfluence of the steric properties of the ligands wereinvestigated.</p><p>Ditopic ligands, containing crown ether units as structuralelements, were synthesized and some of the ligands were used asligands in the palladiumcatalysed allylic alkylation of1,3-diphenyl-2-propenyl acetate with dimethyl malonate. A smallrate enhancement was observed, compared with analogous ligandslacking the crown ether unit, when these ditopic ligands wereused in dilute systems.</p><p>A modular approach was used to synthesize chiralenantiomerically pure pyridyl alcohols and C2-symmetric2,2-bipyridines, with the chirality originating from thechiral pool. Electronic and steric properties of the compoundswere varied and they were used as ligands in theenantioselective addition of diethylzinc to benzaldehyde. Thesense of asymmetric induction was found to be determined by theabsolute configuration of the carbinol carbon atom. Theelectronic properties of the ligands had a minor influence onthe levels of enantioselectivity induced by the ligands.</p><p>Chiral pyridyl phosphinite ligands and pyridyl phosphiteligands were synthesized from the pyridyl alcohols andevaluated as ligands in palladiumcatalysed allylic alkylations.With the phosphinite ligands, the sense of chiral induction wasfound to be determined by the absolute configuration of theformer carbinol carbon atom. A kinetic resolution of theracemic starting material was observed with one of thephosphite ligands. Moderate enantioselectivities wereachieved.</p><p><b>Kewords:</b>asymmetric catalysis, chiral ligand, chiralpool, oxazoline, crownether, ditopic receptor, bipyridine,pyridyl alcohol, modular approach, P,Nligand, diethylzinc,allylic alkylation.</p>
|
Page generated in 0.0293 seconds