Spelling suggestions: "subject:"altimetric"" "subject:"altimetria""
1 |
Referencial altimétrico para a bacia do Rio Amazonas. / Referential altimétrique pour le basin Amazonienne.Campos, Ilce de Oliveira 15 September 2004 (has links)
O conhecimento e o monitoramento do vasto potencial hídrico da bacia Amazônica têm sido uma preocupação de diversos campos da ciência e das administrações pública e privada que necessitam dessas informações. A Agência Nacional de Águas, por exemplo, é responsável pela manutenção e gerenciamento da rede hidrometeorológica do país, com mais de 1500 estações de observação. Para uma melhor análise e aplicação desse importante conjunto de informações nos estudos da bacia hidrográfica, faz-se necessário o estabelecimento de pontos que definam um referencial único para todos os dados, em especial para o cálculo da marca zero das réguas limnimétricas das estações de observação. A definição de um sistema de referência vertical envolve a escolha de um datum vertical e de um tipo de altitude relacionada com o campo de gravidade. Usualmente, o datum vertical relaciona-se ao nível médio dos mares, estimado a partir de uma ou mais estações maregráficas. Tendo em vista as dificuldades logísticas na Amazônia, a cobertura atual da rede altimétrica do IBGE não é suficiente para alcançar a maior parte dos pontos de medição. O presente trabalho concentra-se na avaliação do emprego dos sistemas espaciais de posicionamento (GPS) e de observação por radar-altímetro (TOPEX-POSEIDON) na definição de um referencial homogêneo para a bacia Amazônica, como alternativa ao nivelamento geométrico. Nessa pesquisa, foram implantados pontos de controle em toda a extensão do curso principal da bacia, nos rios Amazonas e Solimões, e as altitudes geométricas obtidas com o GPS foram reduzidas com diferentes modelos geoidais. São apresentados os resultados da comparação da linha d\'água dos rios, definida a partir das informações das séries temporais medidas nas réguas limnimétricas, com o referencial proposto, assim como sugestões para trabalhos futuros. / La connaissance et la surveillance de l\'immense potentiel hydrologique du bassin de l\'Amazone concernent plusieurs domaines de la science et des administrations publiques et privées. L\'agence nationale brésilienne de l\'eau (ANA) par exemple, est responsable de la planification et de la gestion d\'un réseau hydraulique et météorologique au niveau national, avec plus de 1500 stations d\'observation. Pour une meilleure analyse et application de cet ensemble important d\'informations sur les études du bassin hydrographique, il est nécessaire d\'établir un réseau de points définissant un référentiel unique pour toutes les données. C\'est particulièrement le cas pour le calcul de la référence du zéro hydrométrique des règles de mesures aux stations d\'observation du niveau d\'eau des rivières. La définition d\'un système vertical de référence implique le choix d\'informations verticales et d\'un type d\'altitude liés au champ de pesanteur. Habituellement, les informations verticales se rapportent au niveau moyen de la mer, estimé à partir d\'une ou plusieurs mesures de marégraphes. Au vu des difficultés logistiques en Amazonie, couverture actuelle du réseau altimétrique de l\'IBGE n\'est pas suffisante pour atteindre la plupart des postes de mesure. Le travail actuel se concentre donc sur l\'évaluation fournie par un système de positionnement global par satellite (GPS) et par l\'altimétrie radar (TOPEX POSEIDON) pour la définition d\'un référentiel vertical homogène pour le bassin de l\'Amazone, comme alternative à la mise en place du nivellement géométrique. Pour cette étude, Nous avons établi des points de contrôle le long du fleuve principal de bassin (Amazone et Solimoes) et nous avons réduit les altitudes géométriques obtenues avec le GPS en utilisant différents modèles de géoïde. Nous présentons les résultats de la comparaison des niveaux de l\'eau de la rivière, définis à partir des séries temporelles mesurées sur les échelles des rivières, avec le référentiel proposé. Nous présentons également des suggestions futures, concernant les orientations possibles de ces travaux.
|
2 |
Reconstruction de la circulation océanique à partir d'observations satellitaires à très haute résolution / Reconstruction of an oceanic flow from very high-resolution satellite observationsDuran Moro, Marina 14 December 2017 (has links)
Pendant la dernière décennie, il y a eu un incrément de la résolution spatiale des observations satellitaires. Cela est notamment dû aux avancées technologiques implémentées sur les satellites. La quantité d'information observée est vaste, et il faut donc identifier des techniques efficaces pour la traiter et pour produire de cartes précises de la dynamique en surface. La mission future SWOT collectera de données d'élévation de surface (SSH) à très haute résolution spatiale : une partie de la dynamique à petites longueurs d'onde, c'est-à-dire, de la sousméso-échelle, sera représentée dans ces observations. Les observations satellitaires servent à réaliser la reconstruction spatiale en surface et aussi à la projeter vers l'intérieur de l'océan et vers des autres variables. La question posée est donc quelles méthodes peuvent fournir ces estimés 3D et multivariés avec une bonne précision à des échelles proches de la sousméso-échelle.Nous nous situons dans ce travail de thèse dans un cadre d'assimilation de données et d'images : l'objectif du travail étant la reconstruction de façon précise de la dynamique dans la couche de surface de l'océan (~500 m) à partir d'observations satellitaires. Pour ce faire, nous implémentons une méthode qui utilise différentes observations en surface à deux étapes d'analyse séparées. Elle consiste d'abord d'une première étape d'assimilation de données qui réalise une correction linéaire de l'écoulement. La deuxième étape se base dans une méthode d'assimilation d'images (Gaultier et al, 2012) dont l'objectif est de bien localiser les structures lagrangiennes obtenues par le calcul des exposants de Lyapunov. Dans le but de fournir des incertitudes associées aux estimés, nous disposons d'une distribution de probabilité d'ébauche qui sera corrigé par notre méthode : (i) la première étape effectue une analyse SEEK pour corriger cette distribution d'ébauche en utilisant une observation d’élévation de SSH; (ii) la deuxième étape minimise une fonction coût en utilisant l'observation d'une image structure et nous obtenons ainsi une distribution de probabilité finale. Les estimés sont projetés dans la dimension verticale en utilisant des EOFs (Empirical Orthogonal Functions) 3D multivariées, de cette sorte nous avons des estimés de variables observées et des variables non-observées (Duran-Moro et al, 2017).La méthode est testée en utilisant des données synthétiques produites par un modèle numérique à haute résolution (~3 km) dans la Mer de Salomon (SOSMOD36). La méthode fournit des résultats positifs : les estimés sont bien reconstruites sur la vertical et aussi concernant les variables non-observées. Dans ce cadre, nous réalisons une évaluation de l'impact de diverses pseudo-observations altimétriques dans la performance de la méthode. Ceci est réalisé par l'implémentation des traces Jason et Envisat sur l'observation de SSH ainsi qu'à partir du simulateur SWOT développé au JPL. Ce dernier est utilisé pour générer des pseudo-observations SWOT ainsi que des erreurs et du bruit prévus pour cette mission. La corrélation significative de ces erreurs a motivé l'application de la technique dans Ruggiero et al, 2016 dans notre analyse. Des simulations à plus haute résolution spatiale (~1 km) récemment produites à partir du modèle numérique NATL60 en Atlantique Nord sont aussi utilisées pour tester la méthode. Cette étude permet d'évaluer la dépendance des résultats avec la variabilité saisonnière de la dynamique aux moyennes latitudes. / During the last decade, high resolution observations have significantly increased mainly due to the strong innovations of satellite technology. The amount of observed information from satellites is large, and it is necessary to identify effective techniques to treat and to generate surface maps of the ocean dynamics. The future SWOT mission will collect sea surface height (SSH) measurements with a high spatial resolution : some dynamics at small wavelengths, which is known as submeso-scale, will be present in these new observations. Satellite observations could be used to carry out a vertical projection into the deeper ocean and to other variables. The question that rises is which methods can be used to carry out a 3D multivariate analysis with a significant precision, especially at meso and submeso-scale.We work here in a data/image assimilation framework : our objective if to reconstruction with good precision the dynamics in the upper oceanic layer (~500 m) using satellite observations. To do so, we implement a two-step method that uses different observations of the sea surface. The first step consist on the SEEK filter which is a data assimilation technique to carry out a first linear correction of the flow. The second step uses an image assimilation method (Gaultier et al , 2012) to correct the location of the main dynamical structure. This main dynamical structure is obtained by the computation of the Lyapunov exponents. A probability approach is applied to provide uncertainties on the estimates at each step. A first probability distribution of a background state is supposed to be known : the two-step method corrects this probability distribution at each step in order to converge towards the real ocean state. The SEEK filter corrects the background probability distribution using a SSH observation. The second step continues this correction towards smaller scales by using an image structure observation. To carry out the vertical projection, an ensemble of 3D multivariate EOFs (Empirical Orthogonal Functions) is used (Duran-Moro et al, 2017).The method is tested using synthetic data generated by a numerical model in the Solomon Sea region (SOSMOD36). The spatial resolution of these simulations is of ~3 km. We evaluate the response of our method in an idealized case study by using pseudo-observations generated from the simulations. The method provides good results and the estimates are corrected also in the vertical and in terms of other variables. A more detailed exploration of the altimetric observation is realized, especially related to future SWOT observations. Errors of SWOT observations have strong spatial correlations and another technique needs to be used in our method : this modification is carried out following work done in Ruggiero et al, 2016. Simulations from another NEMO configuration in the North Atlantic region (NATL60) are also used to evaluate the method. This second test allows us to explore the method in a different latitude of the globe.
|
3 |
Le développement de LiDAR satellitaire multifonctions. Analyse exploratoire du potentiel de capteurs LiDAR pour le suivi altimétrique et bathymétrique des surfaces en eau continentales et côtièresAbdallah, H. 14 September 2012 (has links) (PDF)
Disposer de données précises, spatialisées et actualisées sur les niveaux et les profondeurs des eaux côtières ou continentales est nécessaire pour assurer et anticiper une meilleure gestion des eaux littorales et continentales. Parmi les techniques de télédétection de suivi de la bathymétrie et d'altimétrie des eaux, le LIDAR apparaît, de par son potentiel de précision, de résolution et de répétitivité spatiale des mesures, comme une technique adaptée et prometteuse, déjà éprouvée sur des plateformes aéroportées. L'objectif de cette thèse est d'évaluer le potentiel du transfert de la technologie LiDAR sur satellite pour estimer l'altimétrie et la bathymétrie des eaux de surfaces continentales et côtières. Une approche expérimentale basée sur des données LiDAR réelles, puis une approche théorique basée sur des formes d'onde LiDAR simulées ont été utilisées pour explorer les performances de capteurs LiDAR satellitaires. Dans une première partie, la qualité des données altimétriques du capteur LiDAR satellitaire GLAS/ICESat fut évaluée pour le suivi de l'altimétrie de plans d'eau. La méthode d'évaluation développée repose sur la prise en compte des phénomènes d'autocorrélation des mesures successives lors des comparaisons de l'élévation GLAS/ICESat avec les niveaux d'eau mesurés aux stations hydrométriques. Les précisions estimées sont de l'ordre de 12 cm. Dans une seconde partie, un modèle de simulation des trains d'ondes LiDAR a été développé. La confrontation des simulations issues du modèle par comparaison à des trains d'ondes observés par des capteurs satellitaires et aéroportés a été effectuée. Dans une dernière partie, les performances de deux configurations de potentiels capteurs LiDAR spatiaux émettant dans l'UV (355 nm) ou dans le vert (532 nm) ont été évaluées à partir des formes d'ondes simulées suivant des distributions globales des différents paramètres de l'eau assumées comme représentatives à l'échelle mondiale et pour quatre types d'eaux différents. Une analyse de sensibilité a été effectuée pour identifier et ordonner les paramètres environnementaux qui influent le plus sur l'écho LiDAR du fond de l'eau, signal déterminant dans la faisabilité de la mesure bathymétrique. Ensuite, les probabilités de mesure de la bathymétrie ainsi la précision sur l'estimation de la bathymétrie ont été calculées suivant un plan d'expérience qui respecte les distributions globales des paramètres d'eau. Cette thèse propose une méthodologie globale, point de départ pour explorer les performances globales et les facteurs limitant de futurs capteurs LiDAR satellitaires dédiés totalement ou partiellement à l'altimétrie et la bathymétrie des eaux côtières et continentales.
|
4 |
Höhenänderungen des Antarktischen Eisschildes: Analyse, Validierung und Kombination von Messungen aus 40 Jahren SatellitenaltimetrieSchröder, Ludwig 30 January 2020 (has links)
Die Veränderungen des Antarktischen Eisschildes (AIS) haben einen entscheidenden Einfluss auf den Meeresspiegel. Für Prädiktionen zukünftiger Szenarien des globalen Klimawandels ist das Verständnis der zugrundeliegenden Prozesse und damit die Beobachtung gegenwärtiger Veränderungen unabdingbar. Mit Hilfe von Satellitenaltimetrie lässt sich die Massenbilanz des AIS großflächig, hochaufgelöst und kontinuierlich ermitteln. Da viele Prozesse jedoch auf sehr langen Zeitskalen ablaufen, ist es das Ziel dieser Arbeit, durch Validierung, Kalibrierung und Kombination der Messungen verschiedener Altimetermissionen die Zeitreihen der Beobachtungen maximal zu verlängern. Nur so lassen sich interannuale Variationen vom Langzeittrend trennen, was entscheidend für das Verständnis der Prozesse der Oberflächenmassenbilanz und der Eisdynamik ist.
Die Ausgangsdaten dieser Arbeit bilden altimetrische Höhenmessungen des AIS. Zur Analyse ihres Genauigkeitspotenzials und um Kalibrierfehler aufzudecken, werden diese Messungen mit unabhängigen In-situ-Daten validiert. In dieser Arbeit wurde hierfür ein umfangreicher Datensatz von kinematischen GNSS-Profilen verwendet, welche zwischen 2001 und 2015 beobachtet wurden und mit Profillängen von bis zu 1700 km das gesamte topografische Spektrum des Eisschildes abdecken. Neben der anspruchsvollen differenziellen Auswertung der GNSS-Profile mit Basislinienlängen von über 1000 km erfordert auch die Reduktion der Höhe der Antenne auf die Schneeoberfläche aufgrund des Einsinkens der Zugmaschinen in die oberen Firnschichten besondere Berücksichtigung.
Anhand dieser Daten wurden Radaraltimetermessungen in unterschiedlichen Prozessierungsvarianten verglichen, um den Einfluss der Wahl der Auswerteansätze zu quantifizieren. Die Genauigkeit der Radaraltimetrie von Eisschilden wird dominiert durch das Retracking zur Ableitung der exakten Signallaufzeit und durch die Methode der Korrektion topografischer Einflüsse. Die Validierung zeigt, dass durch einen schwellwertbasierten Retracker und die Relokation der Messung zum satellitennächsten Punkt die höchste Genauigkeit erreicht wird. Optimierte Varianten dieser Ansätze wurden zur konsistenten Reprozessierung aller Radarmessungen verwendet, wodurch nicht nur ein einheitlicher Datensatz geschaffen, sondern auch die Genauigkeit der meisten Messungen um etwa 50% verbessert wurde. Auch die Laseraltimetermessungen von ICESat wurden anhand der GNSS-Profile kalibriert. Hier wurden Laserkampagnenbias bestimmt und korrigiert, welche andernfalls abgeleitete Höhenänderungsraten um etwa 1,2±0,3 cm/a verfälscht hätten.
Zur gemeinsamen Auswertung der Altimetermissionen Seasat, Geosat, ERS-1, ERS-2, Envisat, ICESat und CryoSat-2 wurde der Ansatz der Wiederholspuranalyse verwendet und noch erweitert, um spezifische Charakteristika unterschiedlicher Missionen entsprechend berücksichtigen zu können. Die hieraus abgeleiteten Zeitreihen beinhalten noch die Kalibrierbias der jeweiligen Messungen, welche im Anschluss unter Beachtung von Aspekten technikspezifischer Abtastung des Geländes und zeitlicher Distanz verschiedener Missionen schrittweise bestimmt und korrigiert werden. Das Ergebnis dieser kombinierten Auswertung bilden monatlich aufgelöste Zeitreihen von Höhendifferenzen gegenüber einer Referenzepoche auf einem Gitter von 10x10 km. Die Validierung mit kinematischen GNSS-Profilen, wie auch mit flugzeuggestützten Lasermessungen, bestätigt die beobachteten Höhenänderungen der kombinierten Zeitreihen und zeigt, dass auch die abgeleiteten Fehlermaße realistische Abschätzungen der Unsicherheit darstellen.
Nach Korrektion der Höhenänderungen um Ausgleichsbewegungen der festen Erde und der Umrechnung in eine Massenänderung lässt sich aus diesen Beobachtungen die Massenbilanz verschiedener Regionen des Antarktischen Eisschildes ableiten. Aus den Ergebnissen geht hervor, dass der beobachtete Teil des AIS nördlich von 81,5° südlicher Breite im Schnitt 85±16 Gt/a zwischen 1992 und 2017 an Masse verloren hat. Die Zeitreihen zeigen, dass diese Rate sich vor etwa 10 Jahren nochmals deutlich beschleunigte, so dass der Massenverlust zwischen 2010 und 2017 137±25 Gt/a betrug. Die Unterteilung in verschiedene Teilregionen des Eisschildes zeigt, dass diese Verluste nahezu vollständig der Westantarktis und der Antarktischen Halbinsel zuzuschreiben sind, während sich in der Ostantarktis Regionen mit Massenverlusten und mit Massenzuwächsen gegenseitig ausgleichen. Aus der Analyse der altimetrischen Beobachtungen der küstennahen Regionen der Ostantarktis, welche bis 1978 zurückreichen, geht hervor, dass der Trend über 25 Jahre sich auch vor 1992 in ähnlicher Weise fortsetzen lässt, so dass hier tatsächlich von einem Langzeittrend gesprochen werden kann. Allerdings wird dieser Trend oftmals durch interannuale Variationen überlagert, was sich aus den monatlichen Zeitreihen gut ablesen lässt und entscheidend für die Interpretation ist. Ein Vergleich mit Massenzeitreihen aus gravimetrischen Beobachtungen und Modellierungen der Oberflächenmassenbilanz zeigt eine hohe Konsistenz der Ergebnisse unterschiedlicher Beobachtungsverfahren, birgt jedoch auch Hinweise, wo Annahmen über die zugrunde liegenden Prozesse zu hinterfragen sind. Somit liefert dieser Vergleich einen wichtigen Beitrag zum Verständnis der Prozesse der Eismassenbilanz des AIS.
Die Grundlage der vorliegenden kumulativen Dissertation bilden zwei wissenschaftliche Publikationen. Die erste Publikation befasst sich mit der Validierung und Kalibrierung unterschiedlicher Altimeterprodukte mit In-situ-Messungen und beinhaltet in diesem Zusammenhang auch Details zur Auswertung der kinematischen GNSS-Profile, welche die Grundlage dieser Untersuchungen bilden. Die zweite Publikation baut auf den Ergebnissen der vorherigen Studie auf, beschreibt die Reprozessierung und die Kombination der Daten verschiedener Altimetermissionen und analysiert die Ergebnisse dieser Multimissionszeitreihen Antarktischer Eishöhenänderungen. Insgesamt soll diese Arbeit einen Beitrag zum verbesserten Verständnis der Veränderungen des AIS im Zuge des globalen Klimawandels liefern. Darüber hinaus zeigt sie auch weiteres Potenzial für zukünftige Arbeiten auf.:Zusammenfassung
Abstract
1. Einführung
1.1. Die polaren Eisschilde
1.2. Satellitengestützte Beobachtungsverfahren
2. Satellitenaltimetrie
2.1. Messprinzip
2.2. Komponenten der Oberflächenhöhenbestimmung
2.2.1. Orbitbestimmung
2.2.2. Distanzmessung
2.3. Missionen
2.4. Satellitenaltimetrie über Eisschilden
2.4.1. Analyse des Rückkehrsignals
2.4.2. Topografiekorrektion
2.4.3. Interferometrischer SAR-Modus
2.4.4. Bias bei Eisaltimetrie
3. Bestimmung von zeitlichen Variationen der Eisoberflächenhöhe
3.1. Methoden zur Bestimmung von Höhenänderungen
3.2. Kombination unterschiedlicher Missionen
4. Validierung
4.1. Messunsicherheiten und Arten der Validierung
4.2. Absolute Validierung mit kinematischen GNSS-Profilen
4.3. Validierung der Bestimmung von Höhenänderungen
5. Geophysikalische Interpretation
5.1. Von Höhenänderungen zur Eismassenbilanz
5.2. Vergleich unterschiedlicher Beobachtungsverfahren
6. Publikationen
PI. Validierung von Satellitenaltimetrie mittels kinematischem GNSS
PII. Multimissions-Satellitenaltimetrie über vier Jahrzehnte
7. Zusammenfassung und Ausblick
Literaturverzeichnis / Changes of the Antarctic Ice Sheet (AIS) have a significant impact on sea level. To predict future scenarios of global climate change, it is essential to understand the contributing processes and, therefor, to observe current changes. Large scale, high resolution and continuous mass balances of the AIS can be obtained with the help of satellite altimetry. As many processes here act over very long temporal scales, the goal of this work is to validate, calibrate and combine the measurements of different altimetry missions in order to obtain time series which are as long as possible. Only such long-term observations allow to separate interannual variations from the long-term trend, which is crucial to understand the processes of surface mass balance and ice dynamics.
Altimetric observations of elevation of the AIS are the basic data used in this work. In order to analyze their accuracy and precision, these measurements are validated using independent in situ observations. Here, an extensive set of kinematic GNSS-profiles was utilized for this purpose. These profiles were observed between 2001 and 2015 and, with lengths of up to 1700 km, they cover the whole spectrum of ice sheet topography. To obtain high precision surface elevation profiles, not only the demanding differential GNSS-processing with baseline lengths of more than 1000 km needs to be treated very carefully, also the reduction of the antenna height measurement to the snow surface requires special attention as the heavy vehicles sink into the upper firn layers in some regions.
With the help of this data set, radar altimetry measurements in different processing versions are compared in order to quantify the influence of the choice of methods to derive the surface elevation. The uncertainty of a radar altimetry measurement of an ice sheet is dominated by the method of retracking, which is used to defined the exact signal travel time, and the methodology to correct for topographic effects. The validation shows that a threshold based retracker and the method of relocating the measurement to the point of closest approach provides the highest accuracy and precision. All radar altimetry measurements have been consistently reprocessed using optimized versions of these approaches. This provided a uniform data basis for their combination and, at the same time, improved the accuracy of these measurements by about 50%. Also the laser measurements of ICESat were calibrated using these profiles. This helped to correct for the laser campaign biases, which, otherwise, would distort any inferred surface elevation rate by 1.2±0.3 cm/yr.
The joint processing of the missions Seasat, Geosat, ERS-1, ERS-2, Envisat, ICESat and CryoSat-2 was performed using the repeat altimetry method. Here, several extensions of this approach were developed to cope with the characteristics of the different missions. The derived time series still contained calibration biases, which were determined and corrected for in the following stepwise approach, taking into consideration aspects as the topography sampling of different techniques and the temporal sequence of the missions. The result of this combination are monthly time series of elevation changes with respect to a reference epoch, gridded on a 10x10 km raster. The validation with kinematic GNSS-profiles, as well as with airborne laser measurements, confirms the elevation changes from the multi-mission time series and proves that also the uncertainty estimates of these results are realistic.
The mass balance of different regions of the Antarctic Ice Sheet was obtained by correcting the surface elevation changes for changes of the underlying solid earth and transforming the results into mass. The obtained data shows that the observed part of the AIS north of 81.5° southern latitude lost an average amount of mass of 85±16 Gt/yr between 1992 and 2017. The time series reveal that this rate accelerated about 10 years ago, leading to a rate of 137±25 Gt/yr between 2010 and 2017. Individual time series of different parts of the ice sheet show that these losses originate almost completely from the West Antarctic Ice Sheet and the Antarctic Peninsula. In contrast for East Antarctica, regions with negative and positive mass balances compensate each other almost entirely. In coastal East Antarctica, where the altimetric observations range back until 1978, the results show that the rate over 25 years continues very similarly also before 1992, which proves that the rates, observed here, can be considered as long-term rates. However, the monthly time series also reveal, that this trend is superimposed by interannual variations, which is crucial for the interpretation of these elevation changes. A comparison with mass time series from gravimetric observations and models of surface mass balance demonstrates the high consistency of the results. On the other hand, this comparison also reveals some discrepancies, indicating where the assumptions about the underlying processes need further improvements. Hence, this comparison provides new insights for the understanding of the processes contributing to the mass balance of the AIS.
This dissertation is based on two scientific publications. The first paper describes the validation and calibration of different products of altimetry using in situ data. Therefore, it also contains details towards the processing of kinematic GNSS-profiles which form the basis of this investigation. Based on these results, the second paper describes the reprocessing and the combination of different altimetry missions and analyzes the results of these multi-mission time series of Antarctic surface elevation changes. In conclusion, this work aims to contribute to a better understanding of the changes of the AIS under a changing climate. Furthermore, it also points out potential aspects for further improvements.:Zusammenfassung
Abstract
1. Einführung
1.1. Die polaren Eisschilde
1.2. Satellitengestützte Beobachtungsverfahren
2. Satellitenaltimetrie
2.1. Messprinzip
2.2. Komponenten der Oberflächenhöhenbestimmung
2.2.1. Orbitbestimmung
2.2.2. Distanzmessung
2.3. Missionen
2.4. Satellitenaltimetrie über Eisschilden
2.4.1. Analyse des Rückkehrsignals
2.4.2. Topografiekorrektion
2.4.3. Interferometrischer SAR-Modus
2.4.4. Bias bei Eisaltimetrie
3. Bestimmung von zeitlichen Variationen der Eisoberflächenhöhe
3.1. Methoden zur Bestimmung von Höhenänderungen
3.2. Kombination unterschiedlicher Missionen
4. Validierung
4.1. Messunsicherheiten und Arten der Validierung
4.2. Absolute Validierung mit kinematischen GNSS-Profilen
4.3. Validierung der Bestimmung von Höhenänderungen
5. Geophysikalische Interpretation
5.1. Von Höhenänderungen zur Eismassenbilanz
5.2. Vergleich unterschiedlicher Beobachtungsverfahren
6. Publikationen
PI. Validierung von Satellitenaltimetrie mittels kinematischem GNSS
PII. Multimissions-Satellitenaltimetrie über vier Jahrzehnte
7. Zusammenfassung und Ausblick
Literaturverzeichnis
|
5 |
Validierung satellitengestützter Oberflächenhöhen und Höhenänderungsraten in Nordostgrönland unter Verwendung von digitalen GeländemodellenLoebel, Erik 10 March 2020 (has links)
Satellitenaltimetrie ist ein Verfahren zur flächendeckenden Beobachtung von Oberflächenhöhen. In den Polarregionen spielen die daraus ableitbaren Höhenänderungsraten eine zentrale Rolle bei der Abschätzung von Massenbilanzen kontinentaler Eisschilde. Aktuell befindet sich eine Vielzahl solcher Altimetriesatelliten im Orbit. In Abhängigkeit vom Messverfahren und verbauten Instruments unterscheiden sich gemessene Höhen sowie der Einfluss systematischer Fehler. In dieser Masterarbeit werden für die Region Nordostgrönland Beobachtungen verschiedener Sensoren prozessiert, vergleichend interpretiert und teilweise validiert. Auswertungen erfolgen anhand digitaler Geländemodelle (DGM), wobei neben bereits etablierten Datensätzen ein Workflow zur automatisierten DGM-Generierung anhand von sehr hochaufgelösten optischen Satellitenaufnahmen vorgestellt sowie angewandt wird. Darauf aufbauend findet eine umfassende Validierung der Eisoberflächenhöhen ATL06 des im September 2018 gestarteten ICESat-2 statt. Es wurde gezeigt, dass keine signifikanten systematischen Abweichungen unter den einzelnen Laserstrahlen sowie zwischen aufsteigenden und absteigenden Satellitenspuren bestehen. Auf dem Eisschild wurden Abweichungen bis zu 10 cm und in den Küstengletscherregionen bis zu 70 cm errechnet, wobei das Genauigkeitsniveau von ICESat-2 über dem der Referenzen liegt. Anhand eines ersten Anwendungsbeispieles konnte die sehr gute Eignung von ICESat-2 zur Co-Registrierung von DGMs gezeigt werden. Durch Hinzunahme von Beobachtungen aktueller Radaraltimeter wurden sämtliche über Eisschilden eingesetzte Altimetriesensoren und Messverfahren vergleichend analysiert. Der zeitlich variable Einfluss der Firnstruktur ist von der Wellenlänge des Messsignals abhängig und kann durch Nutzung eines entsprechenden Retracking-Verfahrens minimiert werden. Korrektionen auf Grundlage verschiedener Parameter des Rückkehrsignals sind für den grönländischen Eisschild ungeeignet. Untersuchungen des Topografieeinflusses auf die Beobachtung zeigen ein enormes Fehlerpotential pulslimitierter Radarsysteme ab Geländeneigungen von 0,3°, wohingegen das Laseraltimeter ICESat-2 eine präzise Vermessung rauer Gebirgs- und Gletscherregionen ermöglicht.
|
6 |
The hydrostatic control of load-induced height changes above subglacial Lake VostokRichter, Andreas, Schröder, Ludwig, Scheinert, Mirko, Popov, Sergey V., Groh, Andreas, Willen, Matthias, Horwath, Martin, Dietrich, Reinhard 21 May 2024 (has links)
Lake Vostok, East Antarctica, represents an extensive water surface at the base of the ice sheet. Snow, ice and atmospheric pressure loads applied anywhere within the lake area produce a hydrostatic response, involving deformations of the ice surface, ice–water interface and particle horizons. A modelling scheme is developed to derive height changes of these surfaces for a given load pattern. It is applied to a series of load scenarios, and predictions based on load fields derived from a regional climate model are compared to observational datasets. Our results show that surface height changes due to snow-buildup anomalies are damped over the lake area, reducing the spatial standard deviation by one-third. The response to air pressure variations, in turn, adds surface height variability. Atmospheric pressure loads may produce height changes of up to 4 cm at daily resolution, but decay rapidly with integration time. The hydrostatic load response has no significant impact neither on ICESat laser campaign biases determined over the lake area nor on vertical particle movements derived from GNSS observations.
|
7 |
Auswertung von ICESat-Laseraltimeterdaten zur Untersuchung glaziologischer Fragestellungen in polaren GebietenEwert, Heiko 25 June 2013 (has links) (PDF)
Mit der Mission des Ice, Cloud and Land Elevation Satellite (ICESat) gelangte erstmals ein Laseraltimetersystem in einen erdgebundenen Orbit. Die vorliegende Arbeit verdeutlicht anhand von drei verschiedenen Anwendungen das Potenzial dieser Altimeterdaten zur Überwachung des Antarktischen und des Grönländischen Eisschilds. Beide Schilde bilden ein Schlüsselglied im globalen Klimasystem der Erde. In einem ersten Hauptabschnitt werden die ICESat-Altimeterdaten für das Gebiet des Lake Vostok, des größten Vertreters subglazialer Seen in der Antarktis, untersucht. Dieses Gebiet eignet sich durch die Höhenstabilität des über dem See liegenden Eisschilds insbesondere als Validierungsgebiet für Altimeterdaten. Diese werden hinsichtlich der zwischen den Lasern auftretenden Offsets umfassend analysiert. Die ermittelten Offsets variieren in einem Bereich zwischen -7.5 und +13.9 cm und erreichen damit die angestrebte Messgenauigkeit der Mission. Im Hinblick auf eine Bestimmung von zeitlich linearen Höhenänderungen der Eisschilde stellen sie den größten genauigkeits-limitierenden Faktor dar. Aus den um die Offsets korrigierten Altimeterdaten wird ein rasterförmiges Topographiemodell der Eisoberfläche erstellt. Dieses wird umfassend untersucht. Im Anschluss werden glaziologische Anwendungen vorgestellt, für welche das Topographiemodell eine zentrale Grundlage bildet. Unter anderem erfolgt in der Kombination mit Eisdicken- und Geoidinformationen der Nachweis, dass sich das Eis über dem See im hydrostatischen Gleichgewicht befindet.
Im Zuge dieser Untersuchung wird aber auch deutlich, dass an einigen Stellen des Sees das Gleichgewicht verletzt wird. Mögliche Ursachen hierfür werden näher untersucht und eingehend diskutiert. Für den Grönländischen Eisschild erfolgt die Analyse der um die Laseroffsets korrigierten Altimeterdaten zur Ableitung zeitlich linearer Höhenänderungen. Die methodische Basis hierfür bildet eine Wiederholspuranalyse der Altimeterdaten. Zur Minimierung des Einflusses der lokalen Topographie und zur besseren Separation der saisonalen Höhenvariation werden die korrespondierenden Altimetermessungen entlang der Referenzspuren an ein drei-komponentiges mathematisches Modell durch Ausgleichung bestmöglich angepasst. Die für den ICESat-Missionszeitraum bestimmte mittlere Höhenrate des Eisschilds beträgt -13.0±0.5 cm/a. Die stärkste Höhenabnahme verzeichnet der Eisschild in den westlichen und südöstlichen küstennahen Randbereichen. Unter Verwendung der Eisdichte für die Volumen-Massen-Umrechnung entspricht dies einer Massenänderung von -209.5±35.6 Gt/a. Dies entspricht einem eustatischen Meeresspiegelanstieg von +0.6±0.1 mm/a.
In einer dritten Anwendung werden die ICESat-Altimeterdaten über dem Amery-Schelfeises untersucht. Es wird eine Methodik vorgestellt, welche auf der Kreuzkorrelation von Höhenprofilen verschiedener Epochen beruht und zur Ableitung von Fließgeschwindigkeiten des Schelfeises dient. Der entwickelte Ansatz wird auf die ICESat-Referenzspur 49 angewendet. Sie verläuft entlang der zentralen Achse des Schelfeises. Im Bereich zwischen -71.6° und -70.1° Breite wächst die Fließgeschwindigkeit von +0.83±0.09 m/d auf +1.02±0.06 m/d an. Das Ergebnis steht im Einklang mit einem unabhängigen Geschwindigkeitsmodell, welches zur Validierung herangezogen wurde. / The Ice, Cloud and Land Elevation Satellite (ICESat) was the first Earth-orbiting laser altimeter mission in space. The following work is dedicated to the ICESat-altimetry data in order to demonstrate their full potential for the investigation of glaciological implications in polar regions. The primary science objective of the mission was to focus on the mass balances of the Greenland Ice Sheet and the Antarctic Ice Sheet. Both of them play a key role in the Earth's climate system. Firstly, the ICESat elevation profiles covering the Lake Vostok region are analysed in more detail. The Lake Vostok is the largest known subglacial lake in Antarctica to date. Due to a fast and strong degradation of the laser energy, the ICESat elevation measurements are affected by offsets. The estimated offsets between the laser operational periods vary between -7.5 und +13.9 cm. Therefore, they can't be neglected in the view of precise mass change determinations for ice sheets.
In addition, a Digital Elevation Model (DEM) of the ice surface topography is generated on the basis of the adjusted elevation profiles. The DEM is analysed in more detail. Furthermore, the DEM forms the basis for the investigation of glaciological implications. In combination with an ice-thickness model and a regional geoid model the hydrostatic equilibrium condition is evaluated. It turns out, that the ice sheet covering the lake fulfils the hydrostatic equilibrium condition within ±1 m for large parts of the lake. Beside this, positive and negative deviations are found in the northern and southern part of the lake. Secondly, ice surface height changes and their temporal variations are inferred for the Greenland ice sheet. This investigation is based on a refined repeat-track analysis in order to exploit the full potential of ICESat's altimetry data. To reduce the influence of the local topography corresponding measurements along the track are fitted to a mathematical model, consisting of three components. For the entire ice sheet a mean surface height trend of -13.0±0.5 cm/yr is determined. The largest changes are identified at the coastal margins of the ice sheet. Using the ice surface height changes long-term volume- and mass-change rates are inferred. For this purpose the density of pure ice is used for the volume-mass-conversion. The overall long-term mass change rate amounts to -209.5±35.6 Gt/yr. This is equivalent to an eustatic sea level rise of +0.6±0.1 mm/yr.
A third approach analyses ICESat elevation profiles over the Amery ice shelf. The method is based on a cross-correlation analysis of different ICESat repeat cycle in order to determine the ice flow velocity along the track. This method is applied to reference track 49. The investigation reveals that between 71.7° S and 70.1° S along the reference track, the ice-flow velocity increases from about +0.83±0.09 m/d to +1.02±0.06 m/d. These results are in general good agreement with velocities derived from an independent velocity field.
|
8 |
Auswertung von ICESat-Laseraltimeterdaten zur Untersuchung glaziologischer Fragestellungen in polaren GebietenEwert, Heiko 06 May 2013 (has links)
Mit der Mission des Ice, Cloud and Land Elevation Satellite (ICESat) gelangte erstmals ein Laseraltimetersystem in einen erdgebundenen Orbit. Die vorliegende Arbeit verdeutlicht anhand von drei verschiedenen Anwendungen das Potenzial dieser Altimeterdaten zur Überwachung des Antarktischen und des Grönländischen Eisschilds. Beide Schilde bilden ein Schlüsselglied im globalen Klimasystem der Erde. In einem ersten Hauptabschnitt werden die ICESat-Altimeterdaten für das Gebiet des Lake Vostok, des größten Vertreters subglazialer Seen in der Antarktis, untersucht. Dieses Gebiet eignet sich durch die Höhenstabilität des über dem See liegenden Eisschilds insbesondere als Validierungsgebiet für Altimeterdaten. Diese werden hinsichtlich der zwischen den Lasern auftretenden Offsets umfassend analysiert. Die ermittelten Offsets variieren in einem Bereich zwischen -7.5 und +13.9 cm und erreichen damit die angestrebte Messgenauigkeit der Mission. Im Hinblick auf eine Bestimmung von zeitlich linearen Höhenänderungen der Eisschilde stellen sie den größten genauigkeits-limitierenden Faktor dar. Aus den um die Offsets korrigierten Altimeterdaten wird ein rasterförmiges Topographiemodell der Eisoberfläche erstellt. Dieses wird umfassend untersucht. Im Anschluss werden glaziologische Anwendungen vorgestellt, für welche das Topographiemodell eine zentrale Grundlage bildet. Unter anderem erfolgt in der Kombination mit Eisdicken- und Geoidinformationen der Nachweis, dass sich das Eis über dem See im hydrostatischen Gleichgewicht befindet.
Im Zuge dieser Untersuchung wird aber auch deutlich, dass an einigen Stellen des Sees das Gleichgewicht verletzt wird. Mögliche Ursachen hierfür werden näher untersucht und eingehend diskutiert. Für den Grönländischen Eisschild erfolgt die Analyse der um die Laseroffsets korrigierten Altimeterdaten zur Ableitung zeitlich linearer Höhenänderungen. Die methodische Basis hierfür bildet eine Wiederholspuranalyse der Altimeterdaten. Zur Minimierung des Einflusses der lokalen Topographie und zur besseren Separation der saisonalen Höhenvariation werden die korrespondierenden Altimetermessungen entlang der Referenzspuren an ein drei-komponentiges mathematisches Modell durch Ausgleichung bestmöglich angepasst. Die für den ICESat-Missionszeitraum bestimmte mittlere Höhenrate des Eisschilds beträgt -13.0±0.5 cm/a. Die stärkste Höhenabnahme verzeichnet der Eisschild in den westlichen und südöstlichen küstennahen Randbereichen. Unter Verwendung der Eisdichte für die Volumen-Massen-Umrechnung entspricht dies einer Massenänderung von -209.5±35.6 Gt/a. Dies entspricht einem eustatischen Meeresspiegelanstieg von +0.6±0.1 mm/a.
In einer dritten Anwendung werden die ICESat-Altimeterdaten über dem Amery-Schelfeises untersucht. Es wird eine Methodik vorgestellt, welche auf der Kreuzkorrelation von Höhenprofilen verschiedener Epochen beruht und zur Ableitung von Fließgeschwindigkeiten des Schelfeises dient. Der entwickelte Ansatz wird auf die ICESat-Referenzspur 49 angewendet. Sie verläuft entlang der zentralen Achse des Schelfeises. Im Bereich zwischen -71.6° und -70.1° Breite wächst die Fließgeschwindigkeit von +0.83±0.09 m/d auf +1.02±0.06 m/d an. Das Ergebnis steht im Einklang mit einem unabhängigen Geschwindigkeitsmodell, welches zur Validierung herangezogen wurde. / The Ice, Cloud and Land Elevation Satellite (ICESat) was the first Earth-orbiting laser altimeter mission in space. The following work is dedicated to the ICESat-altimetry data in order to demonstrate their full potential for the investigation of glaciological implications in polar regions. The primary science objective of the mission was to focus on the mass balances of the Greenland Ice Sheet and the Antarctic Ice Sheet. Both of them play a key role in the Earth's climate system. Firstly, the ICESat elevation profiles covering the Lake Vostok region are analysed in more detail. The Lake Vostok is the largest known subglacial lake in Antarctica to date. Due to a fast and strong degradation of the laser energy, the ICESat elevation measurements are affected by offsets. The estimated offsets between the laser operational periods vary between -7.5 und +13.9 cm. Therefore, they can't be neglected in the view of precise mass change determinations for ice sheets.
In addition, a Digital Elevation Model (DEM) of the ice surface topography is generated on the basis of the adjusted elevation profiles. The DEM is analysed in more detail. Furthermore, the DEM forms the basis for the investigation of glaciological implications. In combination with an ice-thickness model and a regional geoid model the hydrostatic equilibrium condition is evaluated. It turns out, that the ice sheet covering the lake fulfils the hydrostatic equilibrium condition within ±1 m for large parts of the lake. Beside this, positive and negative deviations are found in the northern and southern part of the lake. Secondly, ice surface height changes and their temporal variations are inferred for the Greenland ice sheet. This investigation is based on a refined repeat-track analysis in order to exploit the full potential of ICESat's altimetry data. To reduce the influence of the local topography corresponding measurements along the track are fitted to a mathematical model, consisting of three components. For the entire ice sheet a mean surface height trend of -13.0±0.5 cm/yr is determined. The largest changes are identified at the coastal margins of the ice sheet. Using the ice surface height changes long-term volume- and mass-change rates are inferred. For this purpose the density of pure ice is used for the volume-mass-conversion. The overall long-term mass change rate amounts to -209.5±35.6 Gt/yr. This is equivalent to an eustatic sea level rise of +0.6±0.1 mm/yr.
A third approach analyses ICESat elevation profiles over the Amery ice shelf. The method is based on a cross-correlation analysis of different ICESat repeat cycle in order to determine the ice flow velocity along the track. This method is applied to reference track 49. The investigation reveals that between 71.7° S and 70.1° S along the reference track, the ice-flow velocity increases from about +0.83±0.09 m/d to +1.02±0.06 m/d. These results are in general good agreement with velocities derived from an independent velocity field.
|
Page generated in 0.0659 seconds