131 |
Optické zesilovače pro metropolitní a přístupové sítě / Optical amplifiers for metropolitan and access networksČech, Martin January 2011 (has links)
Aim of this Master´s thesis is to describe and compare most common types of optical amplifiers used in today’s networks. The first section focuses on problematic of optical transmissions and phenomenon which cause degradation of transmitted signal. It is also explained in this section why there is a need to deploy optical amplifiers. Next section describes basic principles, structure and properties of individual types of optical amplifiers. Following section describes simulations which were made to compare the performance of transmission systems with each individual type of optical amplifier. The last section contains a design of optical metropolitan network with wavelength multiplex. Based on simulations from preceding part best amplifier type and optimal amplifier placement was selected. Functionality of the design was tested and simulations described in final section.
|
132 |
Výkonový zesilovač pro pásmo krátkých vln / Shortwave power amplifierFiala, Roman January 2016 (has links)
This master’s thesis describes RF power amplifier design. The designed amplifier has been built. The first three chapters outline basics about radio frequency amplifiers. The basic theory needed for amplifier implementation is also described there. In the fourth chapter the power amplifier is designed. The design is based on the theoretical knowledge. Complete amplifier contains RF preamplifier, power amplifier and filters. The OrCAD PSpice, Ansoft Designer SV and EAGLE programs have been used for the design and verification of some sections of circuits. Measurement results of the built amplifier are in the fifth chapter. This thesis contains also the draft for laboratory exercise.
|
133 |
Vysokofrekvenční výkonové zesilovače / RF Power AmplifiersHrazděra, Tomáš January 2012 (has links)
This work deals with high-frequency power amplifiers. In the theoretical part are briefly summarized the general characteristics and properties of particular working classes of amplifiers focusing on their efficiency. The next section is aimed on design of high-frequency power amplifier for 1296MHz band and its individual components. In this part is desribed design of hybrid combiners - splitters, directional couplers of the coupled lines, amplifiers with RA18H1213G module and power amplifier with transistor BLV958. The work also includes the results of simulations of designed circuit, realization procedure and the measured parameters of manufactured components. In conclusion of this work the theoretical and measured values are compared.
|
134 |
Exploring Novel Applications of the Radiofrequency (RF) Transmit Chain in Magnetic Resonance Imaging (MRI)Huang, Sherry Shuying 23 May 2022 (has links)
No description available.
|
135 |
Peak Power Scaling Of Nanosecond Pulses In Thulium Based Fiber LasersGaida, Christian 01 January 2013 (has links)
Thulium based fiber lasers represent a promising alternative for pulse energy scaling and high peak power generation with ytterbium based systems at 1µm. Advantages of thulium arise from the operation at longer wavelengths and a large gain bandwidth (1.8-2.1µm). Nonlinear effects, such as self phase modulation, stimulated Raman scattering and stimulated Brillouin scattering generally limit peak power scaling in fiber lasers. The longer wavelength of thulium fiber lasers and large mode field areas can significantly increase the nonlinear thresholds. Compared to 1µm systems, thulium fiber lasers enable single mode guidance for two times larger mode field diameter in step index fibers. Similar behavior is expected for index guiding thulium doped photonic crystal fibers. In this work a novel thulium doped rod type photonic crystal fiber design with large mode field diameter ( > 50µm) was first characterized in CW-lasing configuration and then utilized as final amplifier in a two stage master oscillator power amplifier. The system generated MW-level peak power at 6.5ns pulse duration and 1kHz repetition rate. This world record performance exemplifies the potential of thulium fiber lasers to supersede ytterbium based systems for very high peak power generation in the future. As part of this work a computer model for the transient simulation of pulsed amplification in thulium based fiber lasers was developed. The simulations are in good agreement with the experimental results. The computer model can be used for efficient optimization of future thulium based fiber amplifier designs.
|
136 |
DESIGN OF CLASS F-BASED DOHERTY POWER AMPLIFIER FOR S-BAND APPLICATIONSChang, Kyle 01 June 2023 (has links) (PDF)
Modern RF and millimeter-wave communication links call for high-efficiency front end systems with high output power and high linearity to meet minimum transmission requirements. Advanced modulation techniques, such as orthogonal frequency-division multiplexing (OFDM) require a large power amplifier (PA) dynamic range due to the high peak-to-average power ratio (PAPR). This thesis provides the analysis, design, and experimental verification of a high-efficiency, high-linearity S-band Doherty power amplifier (DPA) based on the Class F PA. Traditional Class F PAs use harmonically tuned output matching networks to obtain up to 88.4% power-added efficiency (PAE) theoretically, however the amplifier experiences poor linearity performance due to switched mode operation, typically yielding less than 30dB C/I ratio [1]. The DPA overcomes this linearity limitation by using an auxiliary amplifier to boost output power when the amplifier is subject to a high input power due to its limited conduction cycle. The DPA also provides improved saturated output power back-off performance to maintain high PAE during operation.
The DPA presented in this thesis optimizes PAE while maintaining linearity by employing harmonically tuned Class F amplifier topology on a primary and an auxiliary amplifier. A Class F PA is first designed and fabricated to optimize output network linearity – this is followed by a DPA design based on the fabricated Class F PA. A GaN HEMT Class F PA and DPA operating at 2.2GHz are implemented with the PAs measuring 40% and 45% PAE respectively while maintaining a 30dB carrier-to-intermodulation (C/I) ratio on a two-tone test. The PAE is characterized at maximum 21dBm input power per tone and 20MHz tone spacing. When subject to a single 24dBm continuous wave input tone, the Class F PA and DPA output 37dBm and 35.5dBm respectively. The PAs presented in the thesis provide over 30dB C/I ratio up to 21dBm input tones while maintaining over 40% PAE suitable for base station applications.
|
137 |
Development of "Core-Suction" Technique for Fabrication of Highly Doped Fibers for Optical Amplification and Characterization of Optical Fibers for Raman AmplificationGoel, Nitin Kumar 31 October 2005 (has links)
This thesis presents a novel technique named "Core Suction" for fabricating optical fiber preforms for manufacturing highly doped fibers (HDFs) for optical amplification (Raman effect based or Erbium fiber based). The technique involves drawing the molten non-conventional core glass material into the silica cladding tube to form the preform. The developed technique is simple, inexpensive and shows great potential for fabricating preforms of highly nonlinear non-conventional multi-component glasses as the core material. Preforms were made with various core glasses such as Schott SF6, Lead-Tellurium-Germanate, Lead-Tellurium-Germanate- Neodymium -Erbium and MM2 in silica cladding tubes and then pulled into fibers.
The fabricated fibers were measured for refractive index profile, loss spectrum and spontaneous Raman spectra. Elemental analysis of the fiber samples was also performed using an electron microprobe. Erbium doped fiber amplifiers (EDFAs) were setup using 30 cm, 5cm and 1 cm lengths of fabricated erbium doped fibers and their gain spectra measured. The distributed gain spectrum for an EDFA was also measured using an optical frequency domain reflectometery (OFDR) technique. Commercial dispersion compensated fiber (DCF) with very high GeO2 doping was used to setup a Raman amplifier and the gain spectrum measured.
One of the needs of Raman amplification in optical fibers is to predict an accurate Raman gain, based on the fiber's refractive index profile. A method of predicting Raman gain in GeO2 doped fibers is presented and the predicted Raman gain values are compared with the measured ones in the same fibers. Raman gain issues like the dependence of the Raman gain on the GeO2 concentration, polarization dependence were taken into account for the gain calculations. An experimental setup for Raman gain measurements was made and measurement issues addressed. Polarization dependence of the Raman gain in one kilometer of polarization maintaining fiber was also measured. / Ph. D.
|
138 |
Linearity Enhancement of High Power GaN HEMT Amplifier CircuitsSaini, Kanika 04 October 2019 (has links)
Gallium Nitride (GaN) technology is capable of very high power levels but suffers from high non-linearity. With the advent of 5G technologies, high linearity is in greater demand due to complex modulation schemes and crowded RF (Radio Frequency) spectrum. Because of the non-linearity issue, GaN power amplifiers have to be operated at back-off input power levels. Operating at back-off reduces the efficiency of the power amplifier along-with the output power. This research presents a technique to linearize GaN amplifiers. The linearity can be improved by splitting a large device into multiple smaller devices and biasing them individually. This leads to the cancellation of the IMD3 (Third-order Intermodulation Distortion) components at the output of the FETs and hence higher linearity performance.
This technique has been demonstrated in Silicon technology but has not been previously implemented in GaN. This research work presents for the first time the implementation of this technique in GaN Technology.
By the application of this technique, improvement in IMD3 of 4 dBc has been shown for a 0.8-1.0 GHz PA (Power Amplifier), and 9.5 dBm in OIP3 (Third-order Intercept Point) for an S-Band GaN LNA, with linearity FOM (IP3/DC power) reaching up to 20.
Large-signal simulation and analysis have been done to demonstrate linearity improvement for two parallel and four parallel FETs. A simulation methodology has been discussed in detail using commercial CAD software. A power sampler element is used to compute the IMD3 currents coming out of various FETs due to various bias currents. Simulation results show by biasing one device in Class AB and others in deep Class AB, IMD3 components of parallel FETs can be made out of phase of each other, leading to cancellation and improvement in linearity. Improvement up to 20 dBc in IMD3 has been reported through large-signal simulation when four parallel FETs with optimum bias were used.
This technique has also been demonstrated in simulation for an X-Band MMIC PA from 8-10 GHz in GaN technology. Improvements up to 25-30 dBc were shown using the technique of biasing one device with Class AB and other with deep class AB/class B. The proposed amplifier achieves broadband linearization over the entire frequency compared to state-of-the-art PA's. The linearization technique demonstrated is simple, straight forward, and low cost to implement. No additional circuitry is needed. This technique finds its application in high dynamic range RF amplifier circuits for communications and sensing applications. / Doctor of Philosophy / Power amplifiers (PAs) and Low Noise Amplifiers (LNAs) form the front end of the Radio Frequency (RF) transceiver systems. With the advent of complex modulation schemes, it is becoming imperative to improve their linearity. Through this dissertation, we propose a technique for improving the linearity of amplifier circuits used for communication systems. Meanwhile, Gallium Nitride (GaN) is becoming a technology of choice for high-power amplifier circuits due to its higher power handling capability and higher breakdown voltage compared with Gallium Arsenide (GaAs), Silicon Germanium (SiGe) and Complementary Metal-Oxide-Semiconductor (CMOS) technologies.
A circuit design technique of using multiple parallel GaN FETs is presented. In this technique, the multiple parallel FETs have independently controllable gate voltages. Compared to a large single FET, using multiple FETs and biasing them individually helps to improve the linearity through the cancellation of nonlinear distortion components. Experimental results show the highest linearity improvement compared with the other state-of-the-art linearization schemes.
The technique demonstrated is the first time implementation in GaN technology. The technique is a simple and cost-effective solution for improving the linearity of the amplifier circuits. Applications include base station amplifiers, mobile handsets, radars, satellite communication, etc.
|
139 |
Design and Testing of Off-The-Shelf Electronic Components for an Acoustic Emission Structural Health Monitoring System Using Piezoelectric SensorsLaw, Yiu Kui 23 August 2005 (has links)
The safety concern of aging aircraft is a rising issue in terms of both safety and cost. An aircraft structure failure during flight is unacceptable. A method needs to be developed and standardized to test the integrity of both commercial and military aircrafts. The current method to test the structure of an aircraft requires the aircraft to be taken out of service for inspection; this is costly due to the inspection required to be performed and the lost use from downtime.
A novice idea of an on-site structural health monitoring (SHM) system has been proposed to test the integrity of aircraft structure. An on-site system is a system that can be used to perform inspection on an aircraft simultaneously while the aircraft is in use. This SHM system uses the principles of active lamb wave and passive acoustic emission through the use of piezoelectric sensors as the sensing elements. Piezoelectric sensors can be used both as an input device and as a sensing element.
This research focuses on the development of the major data acquisition electronic components of the system. These components are charge amplifier, high pass filter, low pass filter and line driver. A charge amplifier converts a high impedance signal to a low impedance signal. A high pass filter attenuates the low frequency content of a signal, while a low pass filter attenuates the high frequency content of a signal. A line driver converts a low current signal to a high current signal. All of these components need to operate up to a frequency of 2 MHz. Off-the-shelf electronics will be used for prototyping as custom components will not be feasible at this point of the research. / Master of Science
|
140 |
An Ultrafast, Mid-Wave Infrared Source for Driving High-Order Harmonics Beyond the Water WindowMarra, Zachary A 01 January 2024 (has links) (PDF)
This dissertation details the development of the world’s first cryogenically cooled Fe:ZnSe-based chirped pulse amplifier, a mid-wave infrared source for strong-field physics experimentation. The long upper-state lifetime provided by cryogenically cooling the Fe:ZnSe gain medium allows free-running, diode-pumped Er:YAG lasers to be used as pump lasers. The amplifier is seeded by a novel two-stage optical parametric amplifier pumped at 1 μm, which is potentially carrier-envelope phase-stable. The system is capable of producing 247-fs pulses at 333 Hz and 4.6 mJ with a center wavelength of 4.07 μm, although exact characteristics vary for different repetition rates and arrangements. The spectral bandwidth avoids strong atmospheric CO2 absorption centered around 4.3 μm, allowing operation in ambient air with good beam quality. The laser is simple, stable, reliable, and boasts a high repetition rate and average power compared to other systems. By focusing the 18-GW beam in air, harmonics up to the ninth order were observed indicating its potential for use in strong-field experimentation. Few-cycle pulses were generated by passing the beam, at a repetition rate of 400 Hz, through a large-diameter gas-filled hollow-core fiber followed by dispersion compensating bulk CaF2. A krypton-filled fiber at 370 kPa yielded 1.14-mJ, 42-fs pulses centered at 4.07-μm, while an oxygen-filled fiber at 310 kPa delivered 0.78-mJ, 39-fs pulses spanning 3 to 5.5 μm. This work is a step toward a high repetition rate mid-wave infrared driver of isolated attosecond, keV-level, X-ray pulses. Fe:ZnSe is a unique gain medium with potential to become a disruptive technology across a variety of fields, especially in strong-field science, in which many physical phenomena are enhanced at longer wavelengths.
|
Page generated in 0.0802 seconds