521 |
High performance DSP-based servo drive control for a limited-angle torque motorZhang, Yi January 1997 (has links)
This thesis describes the analysis, design and implementation of a high performance DSP-based servo drive for a limited-angle torque motor used in thermal imaging applications. A limited-angle torque motor is an electromagnetic actuator based on the Laws' relay principle, and in the present application the rotation required was from - 10° to + 10° in 16 ms, with a flyback period of 4 ms. To ensure good quality picture reproduction, an exceptionally high linearity of ±0.02 ° was necessary throughout the forward sweep. In addition, the drive voltage to the exciting winding of the motor should be less than the +35 V ceiling of the drive amplifier. A research survey shows that little literature was available, probably due to the commercial sensitivity of many of the applications for torque motors. A detailed mathematical model of the motor drive, including high-order linear dynamics and the significant nonlinear characteristics, was developed to provide an insight into the overall system behaviour. The proposed control scheme uses a multicompensator, multi-loop linear controller, to reshape substantially the motor response characteristic, with a non-linear adaptive gain-scheduled controller to compensate effectively for the nonlinear variations of the motor parameters. The scheme demonstrates that a demanding nonlinear control system may be conveniently analysed and synthesised using frequency-domain methods, and that the design techniques may be reliably applied to similar electro-mechanical systems required to track a repetitive waveform. A prototype drive system was designed, constructed and tested during the course of the research. The drive system comprises a DSP-based digital controller, a linear power amplifier and the feedback signal conditioning circuit necessary for the closed-loop control. A switch-mode amplifier was also built, evaluated and compared with the linear amplifier. It was shown that the overall performance of the linear amplifier was superior to that of the switch-mode amplifier for the present application. The control software was developed using the structured programming method, with the continuous controller converted to digital form using the bilinear transform. The 6- operator was used rather than the z-operator, since it is more advantageous for high speed sampling systems. The gain-scheduled control was implemented by developing a schedule table, which is controlled by the DSP program to update continuously the controller parameters in synchronism with the periodic scanning of the motor. The experimental results show excellent agreement with the simulated results, with linearity of ±0.05 ° achieved throughout the forward sweep. Although this did not quite meet the very demanding specifications due to the limitations of the experimental drive system, it clearly demonstrates the effectiveness of the proposed control scheme. The discrepancies between simulated and experimental results are analyzed and discussed, the control design method is reviewed, and detailed suggestions are presented for further work which may improve the drive performance.
|
522 |
Study of up & down conversion technique by all-optical sampling based on SOA-MZI / Etude d'une technique de conversion vers les hautes et basses fréquences par échantillonnage tout-optique à base d'un SOA-MZITermos, Hassan 27 February 2017 (has links)
La conversion de fréquence est une fonction clef présente dans divers contextes, particulièrement dans les systèmes mixtes photoniques-hyperfréquences. Aujourd’hui, la suprématie des réseaux optiques pour le transport de données à haut débit sur de grandes distances incite à l’intégration de telles fonctions dans le domaine optique afin de bénéficier des faibles pertes, larges bandes passantes, faibles poids et tailles propres aux technologies optiques. Dans ce travail, nous étudions un mélangeur tout-optique utilisant un composant SOA-MZI (Semiconductor Optical Amplifier Mach-Zehnder Interferometer) et une technique d’échantillonnage permettant la conversion vers les hautes et les basses fréquences. Le principe du mélange exploite les caractéristiques spectrales d’un signal échantillonné pour lequel des répliques du signal d’origine existent à différentes autres fréquences. Utiliser une telle technique pour la conversion de fréquences offre deux avantages : la conversion vers les hautes et les basses fréquences utilise la même configuration du mélangeur et la fréquence de l’oscillateur local peut être inférieure à la gamme des fréquences visées.L’implémentation d’une telle technique d’échantillonnage nécessite un interrupteur optique contrôlé optiquement.Comme cela est montré dans ce travail, un SOA-MZI peut jouer ce rôle. Selon la phase relative entre ses bras, un interféromètre Mach-Zehnder (MZI) peut transmettre ou non un signal optique d’entrée. En plaçant un SOA dans chaque bras de la structure MZI, la modulation croisée de la phase qui existe au sein d’un SOA est mise à profit pour contrôler l’état de l’interféromètre. Contrôlé par une source impulsionnelle optique, cet interrupteur optique permet d’échantillonner un signal optique porteur de données à modulation complexe. La conversion de fréquence de signaux mono et multi-porteuses dans le domaine 0,5-39,5 GHz a été obtenue avec succès. Par utilisation d’une configuration différentielle du SOA-MZI, des conversions vers les hautes et les basses fréquences jusqu’à un débit de 1 Gb/s ont pu être réalisées. / Frequency mixing is a key function existing in different systems, especially in mixed photonic-microwave ones. Today, the supremacy of optical networks to carry high bitrate data over large distances motivates the optical implementation of such functions to benefit from the low loss, high bandwidth, low size and weight of optical technologies. In this work, we study a photonic mixer based on a SOA-MZI (Semiconductor Optical Amplifier Mach-Zehnder Interferometer) device and a sampling technique allowing both conversion towards high and low frequencies.The involved mixing principle exploits the spectral characteristics of a sampled signal in which replicas of the original spectrum exist at different other frequencies. Basing the frequency conversion on a sampling technique gives two advantages: the photonic mixer configuration is the same for up and down conversions, and the frequency of the local oscillator can be less than the addressed frequency range.The implementation of such a sampling technique needs an optically-controlled high-frequency optical switch. As shown in this work, a SOA-MZI can play this role. Depending on the relative phase between its arms, an interferometric structure (MZI) can transmit or cancel an optical input signal. By locating one SOA in each arm of the MZI structure, the cross-phase modulation that exists inside an SOA is exploited to optically control the optical switch state of the MZI.Controlled by an optical pulse source, this optical switch is able to sample an optical input signal carrying complexmodulated data. Frequency conversions of mono and multi-carrier signals in the range 0.5-39.5 GHz have been successfully achieved. By using a differential configuration of the SOA-MZI, both up and down conversions at bitrates up to 1 Gb/s are reached.
|
523 |
Recherche, développement et réalisation d'un contrôleur de Fabry-Perot de nouvelle génération / Research, development and realization of a new generation Fabry-Perot controllerOuattara, Issa 25 June 2015 (has links)
L’équipe Physique des Galaxies du Laboratoire d’Astrophysique de Marseille a développé un nouveau type d'interféromètre de Fabry-Perot, équipé de trois actionneurs piézoélectriques amplifiés et de trois capteurs capacitifs permettant le contrôle de l'espacement et du parallélisme des lames de verres de l'ordre de 200 µm avec une précision de positionnement du nm.L'objectif visé de ce manuscrit, composé de 3 parties, est le pilotage de cet interféromètre. La première partie, composée des chapitres 1 et 2, présente les généralités sur l'interférométrie de Fabry-Perot puis décrit les instruments 3DNTT et BTFI où seront installés l'interféromètre de nouvelle génération et son contrôleur associé. La conception et la réalisation d'un amplificateur hybride en vue de la réduction des non-linéarités des actionneurs piézoélectriques mettent fin à cette partie.La deuxième partie, chapitres 3 et 4, décrit le développement et la réalisation du contrôleur. Pour cela, une démarche basée sur le concept du Co-design a été adoptée.Le contrôleur ainsi réalisé est composé d'une carte de développement Microzed dont le cœur est un système sur puce de la série Zynq 7000 EPP et d'une carte d'interfaçage comportant des convertisseurs 3 ADC et 3 DAC et des circuits d'alimentation. La troisième et dernière partie, chapitres 5 et 6, traite de la modélisation d'état de l’interféromètre de Fabry-Perot et de son contrôle : un contrôle classique basé sur la régulation PID et un contrôle robuste et optimal basé sur le filtrage de KALMAN. Cette dernière partie conclut sur les perspectives pouvant découler des contributions de ce travail sur le contrôle et la commande Fabry-Perot. / The Physics of Galaxies Team of Laboratoire d'Astrophysique de Marseille (LAM) has developed a new type of Fabry-Perot, with three amplified piezoelectric actuators and three capacitive sensors to control the spacing and parallelism of mirror plates of approximately 200 µm with a positioning accuracy of 3 nm.The purpose of this manuscript, consisting of 3 parts is the control of this interferometer.The first part, consisting of Chapters 1 and 2 presents the general interferometry Fabry-Perot and then describes 3DNTT and BTFI instruments which will be installed the next generation interferometer and its associated controller. The design and implementation of a hybrid amplifier to reduce non-linearities of the piezoelectric actuators (hysteresis and creep) end this first part.The second part, Chapters 3 and 4, describes the development and implementation of the controller.For this, an approach based on codesign concept was adopted. The thus achieved controller consists of a Microzed development board whose heart is a system on chip of the 7000 series Zynq EPP (FPGA + Dual-Core ARM Cortex A9) and an interface card with converters (3 ADC and 3 DAC) and power supply circuits.For the finalization of the controller, two steps are necessary: hardware design in Xilinx Vivado and software design in Xilinx SDK.The third and final section, chapters 5 and 6 deals with the Fabry-Perot space-state modeling and its control: a classic control based on PID control and a robust and optimal control based on KALMAN filtering. This last part concludes the outlook may result from contributions of this work on the monitoring and control of the Fabry-Perot.
|
524 |
On-Chip Integrated Distributed Amplifier and Antenna Systems in SiGe BiCMOS for Transceivers with Ultra-Large BandwidthTesta, Paolo Valerio, Klein, Bernhard, Hahnel, Ronny, Plettemeier, Dirk, Carta, Corrado, Ellinger, Frank 23 June 2020 (has links)
This paper presents an overview of the research work currently being performed within the frame of project DAAB and its successor DAAB-TX towards the integration of ultra-wideband transceivers operating at mm-wave frequencies and capable of data rates up to 100 Gbits–¹. Two basic systemarchitectures are being considered: integrating a broadband antenna with a distributed amplifier and integrate antennas centered at adjacent frequencies with broadband active combiners or dividers. The paper discusses in detail the design of such systems and their components, fromthe distributed amplifiers and combiners, to the broadband silicon antennas and their single-chip integration. All components are designed for fabrication in a commercially available SiGe:C BiCMOS technology. The presented results represent the state of the art in their respective areas: 170 GHz is the highest reported bandwidth for distributed amplifiers integrated in Silicon; 89 GHz is the widest reported bandwidth for integrated-system antennas; the simulated performance of the two antenna integrated receiver spans 105 GHz centered at 148GHz, which would improve the state of the art by a factor in excess of 4 even against III-V implementations, if confirmed by measurements.
|
525 |
Nízkošumový zesilovač pro pásmo S / Low Noise Amplifier for the S BandBenites Ayala, Ivan Alejandro January 2019 (has links)
This master's thesis presents the design and the realization of a low noise amplifier (LNA) for the S band of radio frequency spectrum from 2.3 GHz to 2.4 GHz. This thesis is mainly focused on stability and impedance matching networks study. Ansoft Designer and ANSYS HFSS programs are used for this design to simulate the LNA. Different low noise devices are simulated in order to find the best results for the final design. Moreover, a coaxial cavity resonator is designed in the input of the LNA and works as a band pass filter. Finally, the LNA is fabricated and its properties compared with the simulation results.
|
526 |
Vstupní díl UHF přijímače s velmi nízkou spotřebou / Tuner for UHF Receiver with Low Power ConsuptionKaštánek, Martin January 2008 (has links)
The purpose of this work was to make a proposal for input parts of receiver for band 430 to 440 MHz. A model of chosen semiconductor triode BFP540 was created in simulation software. Possibilities how to decrease consumption of this semiconductor triode, keeping the profit, were investigated through the simulation.In compromise consumption, keeping the profit of the amplifier - an optimal operating point for this semiconductor triode UCE = 1,2 V and IC = 2 mA was found. It was tested through the testing wiring with noise microstrips conformity. Ascertained knowledge was used for construction of tuner for UHF receiver. An operating point of input amplifier of UHF receiver was owing to power supply amplifier forced for bigger effectiveness to UCE = 2,65 V and IC = 2,0 mA. Suppression of mirror frequency is provided with Helix filter of the third order, because of intermediate frequency 10,7 MHz. Mixing on intermediate frequency is made again by semiconductor triode BFP540. Selectivity of receiver is provided with intermediate frequency crystal filter 10,7 MHz with bandwidth 15 kHz. Designed input part enables reception of SSB, FM and digital types of modulation.Bandwidth intermediate frequency exit is adapted to this request To receive particular modulation , it is necessary to complete intermediate frequency signal way with appropriate intermediate frequency filter.
|
527 |
RC oscilátory pro pásmo vyšších kmitočtů / Oscillators RC for higher frequency rangePolách, Petr January 2008 (has links)
This thesis deals with RC oscillators applicable in higher frequency ranges with the use of modern active elements. For individual function blocks (conveyor, current feedback amplifier, operational transconductance amplifier, voltage feedback amplifier) suitable models are suggested for the circuit simulator PSpice covering their characteristics on various levels, from an ideal one up to the full description of parasitic effects. On the basis of the study of recommended literature and company documentation various oscillator connections of the ranks 2 and 3 are suggested. By analysis through computer (PSpice, SNAP) the fulfilment of oscillation conditions, onset of oscillations were verified and by means of suitable simulations the effects of the impact on the parasitic characteristics of active elements was examined. Finally there are two oscillator connections stated and verified by simulations with the possibility of electronic retuning.
|
528 |
Optický zesilovač v laboratorní výuce / Optical amplifier in laboratory practiceŠustr, Pavel January 2009 (has links)
The aim of this thesis is to introduce to reader the application and use of optical EDFA amplifiers in optical transmission and to show wiring and practical test, including measurements on amplifier. The aim of this thesis is to propose the use of optical amplifier in laboratory practice for subject Optical networks. The thesis briefly introduces the problems of data transmissions through optical fibers with a focus on the use of optical amplifiers. The basic characteristic of optical transmission paths and the reasons for the use of optical amplifiers are described here. One entire chapter is devoted to distinction of optical amplifiers. Amplifiers can be divided according to location in the transmission path to the booster, in-line and pre-amplifiers and according to the used of amplifying technology to optical amplifiers with subsidies, semiconductor optical amplifiers and Raman optical amplifiers. The factors affecting the efficiency of optical amplifiers, such as noise and the level of saturated power are mentioned here too. The different types of optical amplifiers from the two producers are also described. From these amplifiers was chosen EDFA CzechLight Amplifier from Optokon to be used for the laboratory exercise in the subject of Optical networks. The use of EDFA optical amplifiers in optical transmission lines is mentioned here too. These amplifiers can be used in telecommunications transmission systems and for data transmission over long distances. They will find use in WDM transmission systems and cable TV distribution through the optical fiber to the end users. Practical measurements were performed on optical amplifier CLA-PB01F. In the transmission route was located attenuator and the dependence of output power to input signal power was measured. The amplification course was linear in the range of input values provided by the manufacturer. Laboratory exercise for the subject of Optical networks is aimed at preacquaintance of students with problems EDFA optical amplifiers and practical measurements with the optical amplifier CLA-PB01F. Students acquire basic theoretical knowledge of the issue and verify the functionality of optical amplifiers on a specific exercise. This work is destined for all who wish to get basic knowledge of optical amplifiers, their characteristics and possibilities of their use in optical transmission lines.
|
529 |
Nízkopříkonové emulátory prvků vyššího řádu / Low-power emulators of higher-order elementsTeska, Tomáš January 2013 (has links)
The thesis deals with emulating higher-order elements using the transformation mutators, which were described by Leon Chua in 1971. The procedure of designing mutators from their mathematical description to the synthesis of concrete electrical circuits is described. The circuit solutions are based on the utilization of advanced circuit principles in order to achieve optimal circuit performance. Mutators are implemented as a set of eight incremental modules. Via their cascade connection, it is possible to emulate arbitrary elements from the periodical table of higher-order elements. The proposed solutions are tested by means of computer simulations and also verified by measurements.
|
530 |
Digitálně řízený audio zesilovač ve třídě D s dálkovým ovládáním / D class audio-amplifier with digital and remote controlPetrgál, Filip January 2014 (has links)
The contents of this thesis is design of audio power amplifier in Class D with fully digital control and remote control and is divided into two parts . The first part is devoted to the basic principles and theory of key elements of the entire amplifier. The second part consists of a complete description of the design and construction of a power amplifier, digital control with remote control, a spectrum analyzer, equalizer, preamp VU meters and complete power supply. Each proposal contains a detailed analysis of the solutions supported by simulations and software. For individual parts have been completely measured p arameters.
|
Page generated in 0.0386 seconds