531 |
Výkonové zesilovače v pevné fázi pro pásmo L / Solid State Power Amplifier for the L-BandPecen, Vojtěch January 2017 (has links)
The goal of this diploma's thesis is to create a design of a two stages amplifier working in a band reserved for the secondary surveillance radar at the frequency of 1090 MHz. Output power of the amplifier should be 20 W and efficiency should be as high as possible. Because of this the second stage is designed in class C. Contents of this diploma's thesis include a theoretical analysis, simulations of the amplifier parameters, comparison of the Ansys Designer and AWR Microwave Office simulation programs and design of both stages of the amplifier, followed by a comparison of the measured parameters with the simulations.
|
532 |
Linear Power-Efficient RF Amplifier with Partial Positive FeedbackKing, Matthew E. 01 June 2012 (has links) (PDF)
Over the last decade, the number of mobile wireless devices on the market has increased substantially. New “multi-carrier” modulation schemes, such as OFDM, WCDMA, and WiMAX, have been developed to accommodate the increasing number of wireless subscribers and the demand for faster data rates within the limited commercial frequency spectrum. These complex modulation schemes create signals with high peak-to-average power ratios (PAPR), exhibiting rapid changes in the signal magnitude. To accommodate these high-PAPR signals, RF power amplifiers in mobile devices must operate under backed-off gain conditions, resulting in poor power efficiency. Various efficiency-enhancement solutions have been realized for backed-off devices to combat this issue.
A brief overview of one of the more extensively researched solutions, the Doherty amplifier, is given, and its inherent limitations are discussed. A recently proposed amplifier topology that provides the efficiency benefits of the Doherty amplifier, while overcoming some of the fundamental problems that plague the standard Doherty architecture, is investigated. A step-by-step design methodology is presented and confirmed by extensive simulation in Agilent ADS. A design example, tuned for maximum efficiency at peak output power, is implemented on a PCB and tested to verify the validity of the proposed circuit configuration.
|
533 |
Analysis & Design of Radio Frequency Wireless Communication Integrated Circuits with Nanoscale Double Gate MOSFETsLaha, Soumyasanta 25 August 2015 (has links)
No description available.
|
534 |
Silicon-Based PALNA Transmit/Receive Circuits for Integrated Millimeter Wave Phased ArraysAbdomerovic, Iskren 08 January 2020 (has links)
Phased array element RF front ends typically use single pole double throw (SPDT) switches or circulators with high isolation to prevent leakage of transmit energy into the receiver circuits. However, as phased-array designs scale to the millimeter-wave range, with high degrees of integration, the physical size and performance degradations associated with switches and circulators can present challenges in meeting system performance and size/weight/power (SWAP) requirements. This work demonstrates a loss-aware methodology for analysis and design of switchless transmit/receive (T/R) circuits. The methodology provides design insights and a practical, generally applicable approach for solving the multi-variable optimization problem of switchless power amplifier/low-noise amplifier (PALNA) matching networks, which present optimal matching impedances to both the power amplifier (PA) and the low noise amplifier (LNA) while maximizing power transfer efficiency and minimizing dissipative losses in each (transmit or receive) mode of operation.
Three PALNA example designs at W-band are presented in this dissertation, each following a distinct design methodology. The first example design in 32SOI CMOS leverages PA and LNA circuits that already include 50 Ω matching networks at both input and output. The second example design in 8XP SiGe develops the PA and LNA circuits and integrates the PA output and LNA input matching networks into the PALNA matching network that connects the PA and the LNA. The third design in 32SOI CMOS leverages the loss-aware PALNA design methodology to develop a PALNA that achieves simulated maximum power added efficiency of 18 % in transmit and noise figure of 7.5 dB in receive at 94 GHz, which is beyond the published state-of-art for T/R circuits. In addition, for comparison purposes, this dissertation also presents an efficient, switch-based T/R circuit design in 32SOI CMOS technology, which achieves a simulated maximum power added efficiency of 15 % in transmit and noise figure of 6.5 dB in receive at 94 GHz, which is also beyond the published state-of-art for T/R circuits. / Doctor of Philosophy / In military and commercial applications, phased arrays are devices primarily used to achieve focusing and steering of transmitted or received electromagnetic energy. Phased arrays consist of many elements, each with an ability to both transmit and receive radio frequency (RF) signals. Each element incorporates a power amplifier (PA) for transmit and a low noise amplifier (LNA) for receive, which are typically connected using a single pole double throw (SPDT) switch or a circulator with high isolation to prevent leakage of transmit energy into the receiver circuits. However, as phased arrays exploit the latest technological advances in circuit integration and their frequencies of operation increase, physical size and performance degradations associated with switches and circulators can present challenges in meeting system performance and size/weight/power (SWAP) requirements. This dissertation provides a loss-aware methodology for analysis and design of switchless transmit/receive (T/R) circuits where the switches and circulators are replaced by carefully designed power amplifier/low-noise amplifier (PALNA) impedance matching networks. In the switchless T/R circuits, the design goals of maximum power efficiency and minimum noise in transmit and receive, respectively, are achieved through impedance matching that is optimal and low-loss in both modes of operation simultaneously.
Three distinct PALNA example designs at W-band are presented in this dissertation, each following a distinct design methodology. With each new design, lessons learned are leveraged and design methodologies are enhanced. The first example design leverages already available PA and LNA circuits and connects them using 50 Ω transmission lines whose lengths are designed to guarantee optimum impedance match in receive and transmit mode of operation. The second example design develops new PA and LNA circuits and connects them using 50 Ω transmission lines whose lengths are designed to simultaneously achieve optimum impedance matching for maximum power efficiency in transmit mode of operation and lowest noise in receive mode of operation. The third design leverages a loss-aware PALNA design methodology, a multi-variable optimization procedure, to develop a PALNA that achieves simulated maximum power added efficiency of 18 % in transmit and noise figure of 7.5 dB in receive at 94 GHz, which is beyond the published state-of-art for T/R circuits. In addition, for comparison purposes with the third PALNA design, this dissertation also presents an efficient, switch-based T/R circuit design, which achieves a simulated maximum power added efficiency of 15 % in transmit and noise figure of 6.5 dB in receive at 94 GHz, which is also beyond the published state-of-art for T/R circuits.
|
535 |
Synthesis and evaluation of a charge sensitive amplifier for neutron counters / Stefanie StrachanStrachan, Stefanie January 2013 (has links)
Cosmic-ray fluctuations are monitored by neutron monitors using several different kinds of proportional counter tubes. An important component of these monitors is the electronic subsystem that registers and counts output pulses from these counter tubes. Part of the electronic subsystem is a specific preamplifier. The pulse-height distribution curve of the existing preamplifier used in the neutron monitor system at the Centre for Space Research at the North-West University was found to be incorrect, and therefore the pulse-height information cannot be used for further research on the counter tube characteristics. A correct pulse-height distribution implies that the envelope of the pulse, as generated by an amplifier, has a very specific shape as a result of the physics that governs the generation of pulses in the neutron counter tube. It was therefore proposed that a new charge-sensitive preamplifier be synthesized to provide an output that provides the correct pulse-height distribution graph for a neutron monitor system.
The Centre for Space Research at the North-West University is in the process of designing and building a new mini neutron monitor system. The new charge-sensitive preamplifier will be implemented into this updated system. Ultimately, the electronic subsystem must be able to provide a pulse-height distribution graph at the push of a button, thus making the preamplifier a key component in the new design.
In this dissertation the theory of charge-sensitive amplifiers is researched following a design science research methodology. The results showed that a charge-sensitive amplifier can be synthesized to address both the real-world requirements and the theoretical requirements of this research. / MIng (Electrical and Electronic Engineering), North-West University, Potchefstroom Campus, 2014
|
536 |
Synthesis and evaluation of a charge sensitive amplifier for neutron counters / Stefanie StrachanStrachan, Stefanie January 2013 (has links)
Cosmic-ray fluctuations are monitored by neutron monitors using several different kinds of proportional counter tubes. An important component of these monitors is the electronic subsystem that registers and counts output pulses from these counter tubes. Part of the electronic subsystem is a specific preamplifier. The pulse-height distribution curve of the existing preamplifier used in the neutron monitor system at the Centre for Space Research at the North-West University was found to be incorrect, and therefore the pulse-height information cannot be used for further research on the counter tube characteristics. A correct pulse-height distribution implies that the envelope of the pulse, as generated by an amplifier, has a very specific shape as a result of the physics that governs the generation of pulses in the neutron counter tube. It was therefore proposed that a new charge-sensitive preamplifier be synthesized to provide an output that provides the correct pulse-height distribution graph for a neutron monitor system.
The Centre for Space Research at the North-West University is in the process of designing and building a new mini neutron monitor system. The new charge-sensitive preamplifier will be implemented into this updated system. Ultimately, the electronic subsystem must be able to provide a pulse-height distribution graph at the push of a button, thus making the preamplifier a key component in the new design.
In this dissertation the theory of charge-sensitive amplifiers is researched following a design science research methodology. The results showed that a charge-sensitive amplifier can be synthesized to address both the real-world requirements and the theoretical requirements of this research. / MIng (Electrical and Electronic Engineering), North-West University, Potchefstroom Campus, 2014
|
537 |
Intelligent real-time environment and process adaptive radio frequency front-ends for ultra low power applicationsBanerjee, Debashis 21 September 2015 (has links)
In the thesis the design of process tolerant, use-aware radio-frequency front-ends were explored. First, the design of fuzzy logic and equation based controllers, which can adapt to multi-dimensional channel conditions, are proposed. Secondly, the thesis proves that adaptive systems can have multiple modes of operation depending upon the throughput requirements of the system. Two such modes were demonstrated: one optimizing the energy-per-bit (energy priority mode) and another achieving the lowest power consumption at the highest throughput (data priority mode). Finally, to achieve process tolerant channel adaptive operation a self-learning methodology is proposed which learns the optimal re-configuration setting for the system on-the-fly. Implications of the research are discussed and future avenues of further research are proposed.
|
538 |
Pressure Pulse Generation with Energy RecoveryRotthäuser, Siegfried, Hagemeister, Wilhelm, Pott, Harald 02 May 2016 (has links) (PDF)
The Pressure Impulse test-rig uses the principal energetic advantages of displacementcontrolled systems versus valve-controlled systems. The use of digital-control technology enables a high dynamic in the pressure curve, according to the requirements of ISO6605. Accumulators, along with inertia, make energy recovery possible, as well as, enabling the compression energy to be re-used. As a result of this, there is a drastic reduction in operating costs. A simulation of the system before starting the project allows the development risks to be calculated and the physically achievable performance limits to be shown.
|
539 |
FQPSK Doubles Spectral Efficiency of Telemetry: Advances and Initial Air to Ground Flight TestsFeher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / FQPSK is the abbreviation for Feher Quadrature Phase Shift Keying (FQPSK)
patented systems [1]. Digcom, Inc. licensed FQPSK products demonstrated significant
spectral saving and RF power efficient robust BER performance advantages. These bit
rate agile modems and Non Linearly Amplified (NLA) transceivers, DSP and hardware
implementations, and in some instances “software-radios” (20kb/s to more than 100Mb/s)
and RF frequency agile (from 150MHz to more than 40GHz) developments and systems
have recently been demonstrated and deployed. The spectral efficiency, i.e., data
throughput capability of the 1st generation of FQPSK, as demonstrated in initial Advanced
Range Telemetry (ARTM) flight tests, approximately doubles while 2nd generation
“FQPSK-2” systems have the potential to quadruple the spectral efficiency of operational
PCM/FM telemetry systems and be backward compatible with the 1st generation of
FQPSK technologies. It is also demonstrated that the spectral efficiency advantage of
FQPSK over that of NLA power efficient GMSK, OQPSK and QPSK modulated
transceivers is in the 50% to 300% range and that the potential spectral efficiency
advantage of FQPSK-2 over GMSK [1] is in the 200% to 500% range.
Based on extensive multi-year studies of alternative solutions for spectral and RF
power efficient, robust BER performance systems, several commercial US and
international organizations, AIAA, CCSDS, NASA, ESA, CCSDS and various programs
of the US Department of Defense (DoD) concluded that FQPSK offers the most
spectrally efficient high performance-high speed proven technology solutions and
recommended FQPSK standardization for several data links. Initial DoD-ARTM Program
Office Air-to-Ground L-band and S-band jet airborne telemetry Test and Evaluation
(T&E) data, obtained during the summer of 1998 are briefly highlighted. These include
simultaneosly tested FQPSK and PCM/FM. In these tests the following ARTM objectives
have been demonstrated: (a) FQPSK approximately doubles the spectral efficiency of
currently operational PCM/FM; (b) The Data Link Performance of these two systems is
comparable. The American Institute of Aeronautics and Astronautics (AIAA) draft
modulation standard recommended to the DoD, NASA and CCSDS, was approved by
the AIAA [23]. The AIAA standard recommends “that FQPSK modulation be
immediately adopted as the interim increment–1 standard.”
|
540 |
Development of a non-collinearly phase matched optical parametric amplifier and application in pump-probe spectroscopyRohwer, Egmont J. 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2011. / Please refer to full text to view abstract.
|
Page generated in 0.1005 seconds