• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 390
  • 81
  • 58
  • 22
  • 20
  • 18
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 4
  • Tagged with
  • 706
  • 186
  • 134
  • 133
  • 121
  • 91
  • 89
  • 88
  • 85
  • 82
  • 66
  • 61
  • 60
  • 60
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

OPTIMIZING THE FREQUENCY RESPONSE OF AN OPERATIONAL AMPLIFIER USING A ONE ZERO ONE POLE FEEDBACK NETWORK.

Dempwolf, William Robert. January 1983 (has links)
No description available.
292

GAIN-BANDWIDTH EFFECTS IN THE STATE-VARIABLE FILTERS

Oksasoglu, Ali, 1960- January 1987 (has links)
No description available.
293

Simulation of radiation-induced parametric degradation in electronic amplifiers

Barbara, Nabil Victor, 1964- January 1989 (has links)
Many high performance amplifiers use power MOSFETs in their output stages, especially in operational amplifier applications whenever high current or power is needed. MOSFETs have advantages over bipolar transistors in amplifier output stage because MOSFETs are majority carrier devices. The result is wide frequency response, fast switching and better linearity than power bipolar transistors. But unlike bipolar circuits, which are relatively tolerant of ionizing radiation, MOSFETs may suffer severe parametric degradation at low total-dose levels. The effects of ionizing radiation on MOSFETs are discussed, and the performance of an amplifier circuit that uses a complementary MOSFET source follower in its output stage is simulated to examine the effect of MOSFET radiation damage on amplifier performance. An increase in power dissipation was the most significant degradation caused by ionizing radiation.
294

Design of 60ghz 65nm CMOS power amplifier / Conception d'amplificateur de puissance en technologie CMOS 65nm pour les applications WPAN à 60GHz

Aloui, Sofiane 06 December 2010 (has links)
Le développement d'objets communicants dédiés aux applications Wireless Personal Area Network (WPAN) à 60GHz vise des débits de l'ordre du GBit/sec. Pour satisfaire la contrainte de faible coût, la technologie CMOS silicium est la plus adaptée. L'utilisation de cette technologie est un challenge en soi afin de concilier les aspects « pertes & rendement » vis à vis des contraintes de puissance. Le but de la thèse est de concevoir des amplificateurs de puissance opérant à 60GHz avec la technologie CMOS 65nm de STMicroelectronics. Cette démarche est progressive car il convient d'analyser puis d'optimiser les performances des composants passifs et actifs constituant l'amplificateur de puissance à l'aide des logiciels de simulations électromagnétique et microélectronique. Finalement, des amplificateurs de puissance ont été réalisés et leurs performances répondent au cahier des charges initialement défini. / Telecommunication industry claims for increasing data rate in wireless communication systems. The major demand of high data rate applications concerns a large panel of home multimedia exchanging data especially for the uncompressed HD data transfer. The 7GHz band around 60GHz is free of use and fulfils the short range gigabit communication requirements. CMOS technology is most appropriate since it drives a fast time to market with a low cost for high integration volume. However, the use of CMOS technology is challenging to satisfy loss and performance trade-off under power constraints. This thesis aims at designing power amplifiers operating at 60GHz with 65nm CMOS technology from STMicroelectronics. This approach is progressive because it is necessary to analyze and optimize the performance of passive and active components constituting the power amplifier using electromagnetic and microelectronics software. Finally, power amplifiers have been made. Their performances met specifications originally defined.
295

Técnica para o projeto de um amplificador operacional folded cascode, classe AB, em tecnologia CMOS. / Design technique for a folded cascode, class AB, operational amplifier, in CMOS tecnology.

Murillo Fraguas Franco Neto 12 June 2006 (has links)
A tendência mundial em torno de sistemas SoC – System on Chip – baseados em processo CMOS – Complementary Metal Oxide Semiconductor – digital, apresenta cada vez mais desafios aos projetistas de circuitos integrados. Em especial se observa que enquanto os projetistas de circuitos digitais podem contar com bibliotecas cada vez mais completas de células digitais semi-prontas e ferramentas cada vez mais poderosas para o aprimoramento do projeto, os projetistas analógicos não contam com tais facilidades, sendo necessário realizar o projeto de novas células analógicas para cada especificação recebida. Este trabalho apresenta uma contribuição para a automatização do projeto de blocos analógicos e, para isso, foi escolhido um bloco essencial em muitos projetos analógicos: o amplificador operacional – ampOp. A idéia inicial por trás dessa escolha foi um conjunto de especificações fornecido pela empresa Freescale Semiconductors, para o projeto um préamplificador de áudio realizado no âmbito do Programa Nacional de Microeletrônica – PNM. A topologia escolhida para o amplificador operacional, retirada de [1], foi analisada e utilizada para projeto do amplificador para áudio. Além disso, um software de auxílio ao projeto para este amplificador foi escrito em linguagem C, e seu objetivo é auxiliar no reprojeto do ampOp para atender à especificações diversas. Para isso o software recebe como entradas as próprias especificações e um primeiro projeto do ampOp, realizado com equações simplificadas de projeto. O software então, em conjunto com um simulador elétrico, reprojeta o amplificador, retirando alguns parâmetros relevantes dos arquivos de simulação e utilizando equações de projeto mais completas. Ao final do trabalho, um exemplo de ampOp foi fabricado e caracterizado, sendo os resultados obtidos analisados. / The world trend towards SoC – System on Chip – based on digital CMOS – Complementary Metal Oxide Semiconductor – process presents more and more challenges to the IC designer. One can observe that while digital designers may rely on digital core libraries that are more and more complete, and design tools that are increasingly powerful and capable of optimizing the digital design, analog designers do not have such privileges available, becoming necessary to design such analog cores each time a new set of specifications is received. This work presents a contribution to the automatization of the design of analog cores and, in order to do that, an essential core was chosen: the operational amplifier. The choice for the operational amplifier was made in order to attend to a set of specifications provided by Freescale Semiconductors. This set was applied in the design of an audio pre-amplifier performed in the scope of the National Microelectronics Program – PNM. A topology chosen for the amplifier, extracted from [1], was analysed and applied to design the audio pre-amplifier. Additionaliy, a software for this specific amplifier was written, and its goal is to aid the redesign of the amplifier to comply with a set of specifications. In order to do this, the software receives, as input parameters, the set of specifications and the results of a first amplifier design, done by the analog designer using simplified equations. Then, together with an electrical simulator, the software redesigns the amplifier, reading some relevant information from the output file of the simulation and using more complete relations. At the end of this work, an example of amplifier was manufactured and characterized, and the final results were analyzed.
296

Frequency compensation of CMOS operational amplifier.

January 2002 (has links)
Ho Kin-Pui. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 92-95). / Abstracts in English and Chinese. / Abstract --- p.2 / 摘要 --- p.4 / Acknowledgements --- p.5 / Table of Contents --- p.6 / List of Figures --- p.10 / List of Tables --- p.14 / Chapter Chapter 1 --- Introduction --- p.15 / Overview --- p.15 / Objective --- p.17 / Thesis Organization --- p.17 / Chapter Chapter 2 --- Fundamentals of Operational Amplifier --- p.19 / Chapter 2.1 --- Definitions of Commonly Used Figures --- p.19 / Chapter 2.1.1 --- Input Differential Voltage Range --- p.19 / Chapter 2.1.2 --- Maximum Output Voltage Swing --- p.20 / Chapter 2.1.3 --- Input Common Mode Voltage Range --- p.20 / Chapter 2.1.4 --- Input Offset Voltage --- p.20 / Chapter 2.1.5 --- Gain Bandwidth Product --- p.21 / Chapter 2.1.6 --- Phase Margin --- p.22 / Chapter 2.1.7 --- Slew Rate --- p.22 / Chapter 2.1.8 --- Settling Time --- p.23 / Chapter 2.1.9 --- Common Mode Rejection Ratio --- p.23 / Chapter 2.2 --- Frequency Compensation of Operational Amplifier --- p.24 / Chapter 2.2.1 --- Overview --- p.24 / Chapter 2.2.2 --- Miller Compensation --- p.25 / Chapter Chapter 3 --- CMOS Current Feedback Operational Amplifier --- p.27 / Chapter 3.1 --- Introduction --- p.27 / Chapter 3.2 --- Current Feedback Operational Amplifier with Active Current Mode Compensation --- p.28 / Chapter 3.2.1 --- Circuit Description --- p.29 / Chapter 3.2.2 --- Small Signal analysis --- p.32 / Chapter 3.2.3 --- Simulation Results --- p.34 / Chapter Chapter 4 --- Reversed Nested Miller Compensation --- p.38 / Chapter 4.1 --- Introduction --- p.38 / Chapter 4.2 --- Frequency Response --- p.39 / Chapter 4.2.1 --- Gain-bandwidth product --- p.40 / Chapter 4.2.2 --- Right half complex plane zero --- p.40 / Chapter 4.2.3 --- The Pair of Complex Conjugate Poles --- p.42 / Chapter 4.3 --- Components Sizing --- p.47 / Chapter 4.4 --- Circuit Simulation --- p.48 / Chapter Chapter 5 --- Enhancement Technique for Reversed Nested Miller Compensation --- p.54 / Chapter 5.1 --- Introduction --- p.54 / Chapter 5.2 --- Working principle of the proposed circuit --- p.54 / Chapter 5.2.1 --- The introduction of nulling resistor --- p.55 / Chapter 5.2.2 --- The introduction of a voltage buffer --- p.55 / Chapter 5.2.3 --- Small Signal Analysis --- p.57 / Chapter 5.2.4 --- Sign Inversion of the RHP Zero with Nulling Resistor --- p.59 / Chapter 5.2.5 --- Frequency Multiplication of the Complex Conjugate Poles --- p.60 / Chapter 5.2.6 --- Stability Conditions --- p.63 / Chapter 5.3 --- Performance Comparison --- p.67 / Chapter 5.4 --- Conclusion: --- p.70 / Chapter 5.4.1 --- Circuit Modifications: --- p.70 / Chapter 5.4.2 --- Advantages: --- p.71 / Chapter Chapter 6 --- Physical Design of Operational Amplifier --- p.72 / Chapter 6.1 --- Introduction --- p.72 / Chapter 6.2 --- Transistor Layout Techniques --- p.72 / Chapter 6.2.1 --- Multi-finger Layout Technique --- p.72 / Chapter 6.2.2 --- Common-Centroid Structure --- p.73 / Chapter 6.3 --- Layout Techniques of Passive Components --- p.74 / Chapter 6.3.1 --- Capacitor Layout --- p.74 / Chapter 6.3.2 --- Resistor Layout --- p.75 / Chapter Chapter 7 --- Measurement Results --- p.77 / Chapter 7.1 --- Overview --- p.77 / Chapter 7.2 --- Measurement Results for the Current Feedback Operational Amplifier --- p.77 / Chapter 7.2.1 --- Frequency Response of the inverting amplifier --- p.77 / Chapter 7.3 --- Measurement Results for the Three-Stage Operational Amplifier --- p.80 / Chapter 7.3.1 --- Input Offset Voltage Measurement --- p.80 / Chapter 7.3.2 --- Input Common Mode Range Measurement --- p.80 / Chapter 7.3.3 --- Gain Band width Measurement --- p.81 / Chapter 7.3.4 --- DC Gain measurement --- p.85 / Chapter 7.3.5 --- Slew Rate Measurement --- p.87 / Chapter 7.3.6 --- Phase Margin --- p.88 / Chapter 7.3.7 --- Performance Summary --- p.89 / Chapter Chapter 8 --- Conclusions --- p.90 / Chapter Chapter 9 --- Appendix --- p.96
297

Design and modelling of CMOS operational amplifiers.

January 1998 (has links)
by Chung-Yuk Or. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 95-[98]). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Fully Differential CMOS Operational Amplifier Design --- p.4 / Chapter 2.1 --- Wide-Swing Current Mirror --- p.5 / Chapter 2.2 --- Wide-Swing Biasing Network --- p.8 / Chapter 2.3 --- Fully differential folded-cascode operational amplifier --- p.13 / Chapter 2.3.1 --- Small-Signal Analysis --- p.16 / Chapter 2.4 --- Gain-boost technique --- p.18 / Chapter 2.4.1 --- Frequency Response --- p.24 / Chapter 2.5 --- Common-Mode Feedback Network --- p.26 / Chapter 2.5.1 --- Continuous-Time CMFB Circuit --- p.27 / Chapter 2.5.2 --- Discrete-Time CMFB circuit --- p.33 / Chapter 2.6 --- Design Flow of the Operational Amplifier --- p.35 / Chapter 3 --- Physical Design of the Operational Amplifier --- p.39 / Chapter 3.1 --- Layout Level Design --- p.40 / Chapter 3.2 --- Layout Techniques --- p.42 / Chapter 3.3 --- Input Protection Circuitry --- p.47 / Chapter 4 --- Simulation Results --- p.49 / Chapter 4.1 --- Simulation of the Operational Amplifier --- p.49 / Chapter 4.2 --- Simulation of Auxiliary Amplifiers --- p.57 / Chapter 4.3 --- Simulation of the Common-Mode Feedback Circuit --- p.62 / Chapter 5 --- Measurement Results --- p.70 / Chapter 5.1 --- Transient Response Measurement --- p.70 / Chapter 5.2 --- Frequency Response Measurement --- p.74 / Chapter 5.3 --- Power Consumption Measurement --- p.78 / Chapter 5.4 --- Performance Evaluation --- p.81 / Chapter 6 --- Layout Driven Operational Amplifiers Macromodelling --- p.82 / Chapter 6.1 --- Motivations --- p.83 / Chapter 6.2 --- Methodology --- p.84 / Chapter 6.3 --- Macromodelling the operational amplifier --- p.85 / Chapter 6.4 --- Simulation Results --- p.88 / Chapter 6.5 --- Conclusions --- p.92 / Chapter 7 --- Conclusions --- p.93 / Bibliography --- p.95 / A Layout Diagrams and Chip Micrograph --- p.99
298

Applications of non-identical multi-quantum well semiconductor optical amplifier.

January 2006 (has links)
Wan Shan Mei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract / Acknowledgements / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- History of Semiconductor Optical Amplifier In Optical Networks --- p.1 / Chapter 1.2 --- Comparisons of SOAs With Other Amplifiers --- p.3 / Chapter 1.2.1 --- Erbium Doped Fiber Amplifier (EDFA) --- p.3 / Chapter 1.2.2 --- Raman Amplifiers --- p.5 / Chapter 1.2.3 --- Parametric Amplifiers --- p.7 / Chapter 1.3 --- The Need of SO A for Wavelength Conversion in Optical Networks --- p.8 / Chapter 1.3.1 --- General Applications of SOAs --- p.8 / Chapter 1.3.2 --- Wavelength Conversion of SOAs --- p.9 / Chapter 1.4 --- Cross Gain Modulation (XGM) --- p.11 / Chapter 1.5 --- Cross Phase Modulation (XPM) --- p.13 / Chapter 1.6 --- Four Wave Mixing (FWM) --- p.16 / Chapter 1.7 --- Bi-refringence Switching --- p.19 / Chapter 1.8 --- Conclusion --- p.22 / Chapter 1.9 --- References --- p.22 / Chapter Chapter 2 --- Physics of Semiconductor Optical Amplifier and Background of Quantum Well Semiconductor Optical Amplifier / Chapter 2.1 --- Physics of Semiconductor Optical Amplifier --- p.26 / Chapter 2.1.1 --- General Structure of SOAs --- p.26 / Chapter 2.1.2 --- Principles of Optical Amplification --- p.27 / Chapter 2.1.3 --- Material Gain Coefficient --- p.29 / Chapter 2.1.4 --- Bulk Material Properties of SOAs --- p.32 / Chapter 2.1.5 --- Spontaneous Emission Noise --- p.34 / Chapter 2.1.6 --- Polarization Sensitivity --- p.37 / Chapter 2.1.7 --- Dynamics Effects --- p.38 / Chapter 2.2 --- Background of Quantum Wells Semiconductor Optical Amplifier --- p.38 / Chapter 2.2.1 --- Definition of Quantum Well SOAs --- p.38 / Chapter 2.2.2 --- Different Types of Quantum Well SOAs --- p.39 / Chapter 2.2.3 --- Quantization of the Conduction Band and Valence Band --- p.40 / Chapter 2.3 --- Comparison Between Bulk and Quantum Well SOAs --- p.44 / Chapter 2.3.1 --- Gain Bandwidth --- p.44 / Chapter 2.3.2 --- Polarization Dependence --- p.44 / Chapter 2.3.3 --- Saturation Output Power --- p.45 / Chapter 2.4 --- Conclusion --- p.46 / Chapter 2.5 --- References --- p.46 / Chapter Chapter 3 --- Wideband Wavelength Conversion by XGM in Asymmetrical Multiple Quantum Well Semiconductor Optical Amplifier (AMQW-SOA) / Chapter 3.1 --- Background of Wideband Asymmetrical Multiple Quantum Well Semiconductor Optical Amplifier --- p.47 / Chapter 3.1.1 --- Sequence Influence of Non-identical InGaAsP Quantum Wells on SO A Broadband Characteristics --- p.47 / Chapter 3.1.2 --- Influence of Separate Confinement Heterostructure on Emission Bandwidth InGaAsP SOAs --- p.54 / Chapter 3.2 --- Wideband Wavelength Conversion --- p.58 / Chapter 3.2.1 --- First Experiment of Wideband Wavelength Conversion from 1.5 μm to 14 μm by XGM in AMQW-SOA --- p.62 / Chapter 3.2.2 --- Second Experiment of Wideband Wavelength Conversion from 1.5 μm to 1.4μm by XGM with 2.5 Gbit/s in AMQW-SOA --- p.64 / Chapter 3.2.3 --- Third Experiment of Investigation of Wavelength Conversion from 15 μm to 1.5 μm/1.3 μm by XGM in AMQW-SOA --- p.67 / Chapter 3.3 --- Conclusion --- p.69 / Chapter 3.4 --- References --- p.71 / Chapter Chapter 4 --- Wavelength Conversion by Birefringence Switchingin Asymmetrical Multiple Quantum Well Semiconductor Optical Amplifier (AMQW-SOA) / Chapter 4.1 --- First Experiment of Wideband Wavelength Conversion from 1.5 μm to 1.4 μm by Birefringence Switching in AMQW-SOA --- p.74 / Chapter 4.2 --- Second Experiment of Investigation of Wavelength Conversion from 1.5 μm to 1.5μm by Birefringence Switching in AMQW-SOA --- p.76 / Chapter 4.3 --- Conclusion --- p.78 / Chapter 4.4 --- References --- p.79 / Chapter Chapter 5 --- Asymmetrical Multiple Quantum Well Semiconductor Optical Amplifier (AMQW-SOA) for Pattern-Effect Free Gain / Chapter 5.1 --- Examples Methods of Pattern Effect Compensation --- p.81 / Chapter 5.1.1 --- Suppression of Pattern Dependent Effects from a Semiconductor Optical Amplifier using an Optical Delay Interferometer (ODI) / Chapter 5.1.2 --- Acceleration of Gain Recovery in QD-SOA --- p.84 / Chapter 5.2 --- Background Theory of Quantum Well Reservoirs and Carrier Transit Time --- p.87 / Chapter 5.3 --- First Experiment of Pattern Effect Free Amplification in AMQW-SOA --- p.92 / Chapter 5.4 --- Second Experiment of Pattern Effect Free Amplification in AMQW-SOA --- p.97 / Chapter 5.5 --- Conclusion --- p.102 / Chapter 5.6 --- References --- p.103 / Chapter Chapter 6 --- Conclusion and Future Work / Chapter 6.1 --- Conclusion --- p.105 / Chapter 6.2 --- Future Work --- p.108 / Appendix Butterfly Photonic Packaging --- p.109
299

Design of a thermal operational amplifier : thermics applied to heat signal control.

McCarthy, Roger Lee January 1977 (has links)
Thesis. 1977. Ph.D.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Bibliography: p. 293-295. / Ph.D.
300

Técnica para o projeto de um amplificador operacional folded cascode, classe AB, em tecnologia CMOS. / Design technique for a folded cascode, class AB, operational amplifier, in CMOS tecnology.

Franco Neto, Murillo Fraguas 12 June 2006 (has links)
A tendência mundial em torno de sistemas SoC – System on Chip – baseados em processo CMOS – Complementary Metal Oxide Semiconductor – digital, apresenta cada vez mais desafios aos projetistas de circuitos integrados. Em especial se observa que enquanto os projetistas de circuitos digitais podem contar com bibliotecas cada vez mais completas de células digitais semi-prontas e ferramentas cada vez mais poderosas para o aprimoramento do projeto, os projetistas analógicos não contam com tais facilidades, sendo necessário realizar o projeto de novas células analógicas para cada especificação recebida. Este trabalho apresenta uma contribuição para a automatização do projeto de blocos analógicos e, para isso, foi escolhido um bloco essencial em muitos projetos analógicos: o amplificador operacional – ampOp. A idéia inicial por trás dessa escolha foi um conjunto de especificações fornecido pela empresa Freescale Semiconductors, para o projeto um préamplificador de áudio realizado no âmbito do Programa Nacional de Microeletrônica – PNM. A topologia escolhida para o amplificador operacional, retirada de [1], foi analisada e utilizada para projeto do amplificador para áudio. Além disso, um software de auxílio ao projeto para este amplificador foi escrito em linguagem C, e seu objetivo é auxiliar no reprojeto do ampOp para atender à especificações diversas. Para isso o software recebe como entradas as próprias especificações e um primeiro projeto do ampOp, realizado com equações simplificadas de projeto. O software então, em conjunto com um simulador elétrico, reprojeta o amplificador, retirando alguns parâmetros relevantes dos arquivos de simulação e utilizando equações de projeto mais completas. Ao final do trabalho, um exemplo de ampOp foi fabricado e caracterizado, sendo os resultados obtidos analisados. / The world trend towards SoC – System on Chip – based on digital CMOS – Complementary Metal Oxide Semiconductor – process presents more and more challenges to the IC designer. One can observe that while digital designers may rely on digital core libraries that are more and more complete, and design tools that are increasingly powerful and capable of optimizing the digital design, analog designers do not have such privileges available, becoming necessary to design such analog cores each time a new set of specifications is received. This work presents a contribution to the automatization of the design of analog cores and, in order to do that, an essential core was chosen: the operational amplifier. The choice for the operational amplifier was made in order to attend to a set of specifications provided by Freescale Semiconductors. This set was applied in the design of an audio pre-amplifier performed in the scope of the National Microelectronics Program – PNM. A topology chosen for the amplifier, extracted from [1], was analysed and applied to design the audio pre-amplifier. Additionaliy, a software for this specific amplifier was written, and its goal is to aid the redesign of the amplifier to comply with a set of specifications. In order to do this, the software receives, as input parameters, the set of specifications and the results of a first amplifier design, done by the analog designer using simplified equations. Then, together with an electrical simulator, the software redesigns the amplifier, reading some relevant information from the output file of the simulation and using more complete relations. At the end of this work, an example of amplifier was manufactured and characterized, and the final results were analyzed.

Page generated in 0.4415 seconds