• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 391
  • 81
  • 58
  • 22
  • 20
  • 18
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 4
  • Tagged with
  • 706
  • 186
  • 134
  • 133
  • 121
  • 91
  • 89
  • 88
  • 85
  • 82
  • 66
  • 61
  • 60
  • 60
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Novel DSP algorithms for adaptive feedforward power amplifier design.

January 2003 (has links)
Chan Kwok-po. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Characterization of Nonlinearity in Power Amplifier --- p.6 / Chapter 2.1. --- Ideal Amplifier Representation --- p.6 / Chapter 2.2. --- Nonlinear Amplifier Representation --- p.7 / Chapter 2.2.1 --- Series Representation --- p.7 / Chapter 2.2.2 --- AM-AM and AM-PM Distortion --- p.7 / Chapter 2.2.3 --- Two-tone Intermodulation --- p.9 / Chapter 2.2.4 --- Nonlinearity on Digital Modulation Formats --- p.11 / Chapter Chapter 3 --- Linearization Techniques --- p.13 / Chapter 3.1. --- Power Back-off --- p.14 / Chapter 3.2. --- Feedback Technique --- p.15 / Chapter 3.3. --- Pre-distortion Technique --- p.16 / Chapter 3.4. --- Feed-forward Technique --- p.18 / Chapter 3.5. --- Linearization Systems with Signal Processing --- p.19 / Chapter 3.5.1 --- Envelope Elimination and Restoration (EER) --- p.19 / Chapter 3.5.2 --- Linear Amplification Using Nonlinear Components (LINC) --- p.20 / Chapter 3.5.3 --- Combined Analogue-locked Loop Universal Modulator (CALLUM) --- p.21 / Chapter 3.5.4 --- Linear Amplification Employing Sampling Techniques (LIST) --- p.21 / Chapter 3.6. --- Other Linearization Techniques --- p.22 / Chapter Chapter 4 --- Feed-forward Power Amplifier System --- p.23 / Chapter 4.1. --- General Description --- p.23 / Chapter 4.2. --- Adaptive Feed-forward Power Amplifier System --- p.25 / Chapter 4.2.1 --- Power Minimization --- p.28 / Chapter 4.2.2 --- Pilot Injection Technique --- p.29 / Chapter 4.2.3 --- Look-up-table Technique (Temperature Compensation) --- p.31 / Chapter 4.2.4 --- Correlation Based Feedback Control (Dual-loop) --- p.32 / Chapter 4.2.5 --- Correlation Based Feedback Control (Triple-loop) --- p.34 / Chapter 4.2.6 --- Digital Implementation on Adaptive FFPA --- p.35 / Chapter Chapter 5 --- DSP-based Adaptive FFPA Analysis --- p.37 / Chapter 5.1. --- System Architecture --- p.37 / Chapter 5.2. --- System Modeling --- p.39 / Chapter 5.3. --- Principle of Adaptation --- p.40 / Chapter 5.3.1 --- Adaptation in Error Extraction Loop --- p.40 / Chapter 5.3.2 --- Adaptation in Main-tone Suppression Loop --- p.43 / Chapter 5.3.3 --- Adaptation in Distortion Cancellation Loop --- p.44 / Chapter 5.3.4 --- Complex Adaptation --- p.46 / Chapter 5.4. --- Adaptation Performance Analysis --- p.47 / Chapter 5.4.1 --- Condition for Convergence --- p.47 / Chapter 5.4.2 --- Rate of Convergence --- p.48 / Chapter 5.4.3 --- Misadjustment --- p.49 / Chapter 5.4.4 --- Summary of the System Performance --- p.51 / Chapter 5.5. --- System Design Consideration --- p.51 / Chapter 5.5.1 --- Quadrature Sampling --- p.51 / Chapter 5.5.2 --- Data Processing --- p.52 / Chapter 5.6. --- Sensitivity Analysis --- p.55 / Chapter 5.6.1 --- Vector Representation --- p.55 / Chapter 5.6.2 --- Amplitude and Phase Matching --- p.56 / Chapter 5.6.3 --- Time-delay Matching --- p.58 / Chapter 5.7. --- Analog-to-digital Interface: Design Consideration --- p.60 / Chapter 5.7.1 --- Sampling Rate Consideration --- p.60 / Chapter 5.7.2 --- Finite Word-length --- p.61 / Chapter 5.8. --- Digital-to-analog Interface: Design Consideration --- p.63 / Chapter Chapter 6 --- New DSP Algorithms for High Performance Adaptive FFPA --- p.67 / Chapter 6.1. --- Variable Loop-gain Algorithm --- p.67 / Chapter 6.2. --- Variable Step-size Algorithm --- p.71 / Chapter 6.3. --- Least-mean-fourth Algorithm --- p.74 / Chapter Chapter 7 --- Implementation of DSP-based Adaptive FFPA --- p.79 / Chapter 7.1. --- Hardware Construction --- p.79 / Chapter 7.2. --- Experimental Results: LMS Algorithm --- p.82 / Chapter 7.3. --- Experimental Results: Variable Loop-gain Algorithm --- p.86 / Chapter 7.4. --- Experimental Results: Variable Step-size Algorithm --- p.88 / Chapter 7.5. --- Experimental Results: Lesat-mean-fourth Algorithm --- p.90 / Chapter Chapter 8 --- Conclusion --- p.92 / Appendix I Matlab Program for Computer Simulation of Adaptive FFPA --- p.A-l / Appendix II DSP Program for Experimental Adaptive FFPA --- p.A-5 / References --- p.R-1 / Author's Publications --- p.AP-1
302

Analysis of Intermodulation Distortion for MESFET Small-signal Amplifiers

Ahmad, Imad Saleh 19 January 1995 (has links)
Using the nonlinear Volterra series representation, analytical expressions for the third-order intermodulation distortion power and intercept point for a MESFET small-signal amplifier are derived when its equivalent circuit is bilateral and includes the gate-to-drain capacitance (CgJ explicitly as a nonlinear element. Previously developed analytical expressions treated Cgd as a linear element or incorporated it as part of gate-to-source and drainto- source capacitances (Cgs and Cds). These new analytical expressions are then compared with experimental data and good agreement is obtained. The analytical expressions are also used to study the variation of intermodulation distortion with input power, frequency, and source and load impedances. It is shown that the nonlinearity of Cgd contributes significantly to the intermodulation distortion power and the third-order intercept point and therefore should not be neglected in the analysis and design.
303

Comparison of noise performance of capacitive sensing amplifiers

Strait, Thomas J. January 2006 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Department of Electrical and Computer Engineering, 2006. / Includes bibliographical references.
304

A Study of Switched Mode Power Amplifiers using LDMOS

Al Tanany, Ahmed January 2007 (has links)
<p>This work focuses on different kinds of Switch Mode Power Amplifiers (SMPAs) using LDMOS technologies. It involves a literature study of different SMPA concepts. Choosing the suitable class that achieves the high efficiency was the base stone of this</p><p>work. A push-pull class J power amplifier (PA) was designed with an integrated LC resonator inside the package using the bondwires and die capacitances. Analysis and motivation of the chosen class is included. Designing the suitable Input/Output printed circuit board (PCB) external circuits (i.e.; BALUN circuit, Matching network and DC</p><p>bias network) was part of the work. This work is done by ADS simulation and showed a simulated result of about 70% drain efficiency for 34 W output power and 16 dB gain at 2.14 GHz. Study of the losses in each part of the design elements is also included.</p><p>Another design at lower frequency (i.e.; at 0.94 GHz) was also simulated and compared to the previous design. The drain efficiency was 83% for 32 W output power and 15.4 dB Gain.</p>
305

Analysis and design of CMOS RF LNAs with ESD protection

Chandrasekhar, Vinay 01 April 2002 (has links)
An analysis that accounts for the effect of standard electrostatic discharge (ESD) structures on critical LNA specifications of noise figure, input matching and gain is presented. It is shown that the ESD structures degrade LNA performance particularly for higher frequency applications. Two LNAs, one with ESD protection and one without, which operate at 2.4 GHz have been fabricated in a 0.l5��m CMOS process. The LNAs feature one of the best reported performances for CMOS LNAs to date. The LNA with ESD protection achieves a gain of 12dB, a NF of 2.77dB and an IIP3 of 2.4dBm with a power consumption of 4.65mW. The LNA without ESD protection achieves a gain of 14dB, a NF of 2.36dB and an 11P3 of -2.2dBm with a power consumption of 4.65mW. / Graduation date: 2002
306

Electron beam waves in microwave tubes

January 1958 (has links)
H.A. Haus. / "April 5, 1958"--Cover. "Presented at the Symposium on Electronic Waveguides, Polytechnic Institute of Brooklyn, April 8-10, 1958." / Bibliography: p. 131-132. / Army Signal Corps Contract DA36-039-sc-64637. Dept. of the Army Task 3-99-06-108 and Project 3-99-00-100.
307

Power gain in feedback amplifiers

January 1953 (has links)
S.J. Mason. / "August 25, 1953." / Army Signal Corps Contract DA 36-039 sc-100 Project 8-102B-0 Dept. of the Army Project 3-99-10-022
308

On a class of transfer functions suitable for video networks

January 1950 (has links)
R.M. Fano. / "April, 13, 1950." / Army Signal Corps Contract No. W36-039-sc-32037 Project No. 102B. Dept. of the Army Project No. 3-99-10-022.
309

Low-frequency spectrum of lock-in amplifiers

January 1949 (has links)
C.A. Stutt. / "March 26, 1949." / Bibliography: p. 18. / Army Signal Corps Contract No. W36-039-sc-32037 Project No. 102B Dept. of the Army Project No. 3-99-10-022
310

Theoretical limitations on the broadband matching of arbitrary impedances

January 1948 (has links)
R.M. Fano. / "January 2, 1948." / Bibliography: p. 34. / Army Signal Corps Contract W-36-039 sc-32037.

Page generated in 0.0427 seconds