• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 5
  • 5
  • Tagged with
  • 63
  • 34
  • 23
  • 21
  • 15
  • 14
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Mecanismos envolvidos no perfil antipsicótico do canabidiol / Mechanisms involved in cannabidiol antipsychotic profile

Pedrazzi, João Francisco Cordeiro 05 October 2018 (has links)
A esquizofrenia é uma desordem altamente incapacitante que atinge cerca de 1% da população, envolvendo desequilíbrio da neurotransmissão dopaminérgica e uma hipofunção glutamatérgica. Portadores dessa doença apresentam deficiência do processamento de informações caracterizada por prejuízo no teste de inibição pré-pulso (prepulse inhibition - PPI). Essa condição pode ser reproduzida em modelos experimentais, pelo tratamento com psicoestimulantes, como a anfetamina (ANF) e atenuado/revertido pelo tratamento com antipsicóticos. O canabidiol (CBD) é o principal componente não psicotomimético da Cannabis sativa. Estudos clínicos e pré-clínicos sugerem que o CBD apresenta perfil antipsicótico, com baixa indução de efeitos adversos. Contudo, até o momento poucos estudos foram realizados com o objetivo de investigar os mecanismos farmacológicos e/ou moleculares envolvidos nesse perfil. Os prováveis mecanismos envolvidos com as propriedades antipsicóticas do CBD parecem envolver a ativação de receptores TRPV1 e o aumento da sinalização do endocanabinoide anandamida. No presente estudo, demonstramos que os receptores TRPV1 e o aumento da disponibilidade de anandamida parecem participar do perfil antipsicótico do CBD. Nessas investigações, não observamos participação dos receptores 5-HT1A. A microinjeção de CBD no córtex pré-frontal (CPF), estrutura envolvida com a fisiopatologia da esquizofrenia e um provável sítio para ação de antipsicóticos, não atenuou o prejuízo induzido por ANF no PPI. Recentemente, mecanismos epigenéticos, como a metilação do DNA, têm sido associados à fisiopatologia da esquizofrenia. Nesse sentido, avaliamos o envolvimento da metilação do DNA em estruturas envolvidas com a neurobiologia da esquizofrenia regulada por CBD, sobre as respostas comportamentais induzidas por drogas psicotomiméticas. Verificamos que a ANF causa um aumento da metilação global no estriado ventral, efeito bloqueado pelo pré-tratamento com CBD e de forma semelhante com o antipsicótico clozapina (CLZ). Não observamos alterações na metilação global no CPF. O tratamento com MK-801 não alterou a metilação global nas duas estruturas anteriormente citadas. Protocolo experimental semelhante foi utilizado em mais duas abordagens: (i) a expressão do fator neurotrófico do cérebro (BDNF), relacionado com a manutenção, crescimento e diferenciação dos neurônios está aumentada no hipocampo dos animais tratados com a associação CBD e ANF, padrão semelhante foi observado com a associação CLZ e ANF. (ii) a expressão de fosfo-histona acetilada, um marcador que indica alterações na cromatina, intimamente ligada com as alterações da expressão gênica está aumentada no núcleo acumbens e CPF dos animais tratados com a associação CBD e ANF. Os dados aqui apresentados sugerem que os receptores TRPV1 e o endocanabinoide anandamida parecem estar envolvidos com o perfil antipsicótico do CBD. Pela primeira vez foi demonstrado que tanto o pré-tratamento com CBD ou CLZ podem alterar o aumento da metilação global de DNA induzido por ANF. Além disso, a expressão de BDNF no hipocampo e a expressão de fosfo-histona acetilada podem ser outros mecanismos que merecem atenção em relação ao perfil antipsicótico do CBD. / Schizophrenia is a highly disabling disorder that affects about 1% of the population and involves impaired dopaminergic neurotransmission and glutamatergic hypofunction. Patients with this disorder have a deficiency in information processing characterized by disruption in the prepulse inhibition (PPI) test. This condition can be reproduced in experimental models by treatment with psychostimulants such as amphetamine and attenuated / reversed by treatment with antipsychotics. Cannabidiol (CBD) is the main non-psychotomimetic component of Cannabis sativa. Clinical and preclinical studies suggest that CBD has an antipsychotic profile, with low induction of adverse effects. However, to date, few studies have been carried out to investigate the pharmacological and / or molecular mechanisms involved in this outcome. The likely mechanisms involved with the antipsychotic properties of CBD appear to involve activation of TRPV1 receptors and increased endocannabinoid anandamide signaling. In the present study, we demonstrated that TRPV1 receptors and the increased availability of anandamide appear to participate in the CBD antipsychotic profile. In these investigations, we did not observe participation of 5-HT1A receptors. Microinjection of CBD in the prefrontal cortex, structure involved in the pathophysiology of schizophrenia and a probable site of antipsychotic action, did not attenuate the amphetamine-induced disruption in PPI. Recently, epigenetic mechanisms, such as DNA methylation, have been associated with the pathophysiology of schizophrenia. In this sense, we also evaluated the involvement of DNA methylation in structures involved with the neurobiology of CBD-regulated schizophrenia on behavioral responses induced by psychotomimetic drugs. We found that amphetamine causes increased global methylation in the ventral striatum, an effect blocked by pre-treatment with CBD and similarly with the antipsychotic clozapine. We did not observe changes in the global methylation in prefrontal cortex. Treatment with MK-801 did not alter the global methylation in the two aforementioned structures. Similar experimental protocol was used in two other approaches: (i) brain neurotrophic factor (BDNF) expression, related to the maintenance, growth and differentiation of neurons is increased in the hippocampus of animals treated with CBD and amphetamine; a similar pattern was observed with the association clozapine and amphetamine. (ii) the expression of acetylated phospho-histone, a marker indicating changes in chromatin, closely linked to changes in gene expression is increased in the nucleus acumbens and CPF in animals treated with the CBD and amphetamine combination. The data presented here suggest TRPV1 receptors and the endocannabinoid anandamide seem to be involved with the antipsychotic profile of CBD. For the first time it has been shown that both pre-treatment with CBD or clozapine may alter the increase in overall DNA methylation induced by amphetamine. In addition, the expression of BDNF in the hippocampus and the expression of acetylated phospho-histone may be different mechanisms that deserve attention in relation to the antipsychotic profile of CBD.
62

The effect of eicosapentaenoic acid on brain and platelet produced bioactive lipid mediators. The effect of eicosapentaenoic acid, docosapentaenoic acid and other polyunsaturated fatty acids on the eicosanoids and endocannabinoids produced by rat brain and human platelets using electrospray ionisation tandem mass spectrometry-based analysis.

Mir, Adnan A. January 2009 (has links)
Eicosapentaenoic acid (EPA) is a polyunsaturated fatty acid (PUFA) with neuroprotective and cardioprotective properties. It is thought that some of the actions of EPA may be attributed to its elongated metabolite, the PUFA docosapentaenoic acid (DPA). Docosahexaenoic acid (DHA) and arachidonic acid (AA) are bioactive PUFA ubiquitously expressed in neural tissues. EPA and AA can be converted by cyclooxygenase (COX) to prostanoids and by lipoxygenase (LOX) to hydroxy fatty acids. PUFA can also be converted to ethanolamides in the brain. These mediators are involved in physiological and pathological processes in many bodily systems. The purpose of this study was to examine the production of eicosanoids, hydroxy fatty acids and fatty acid ethanolamides in young and aged rat brain following EPA or DPA enriched diets. The effects of specific PUFA on human platelet eicosanoid production were also investigated as these mediators play a role in adhesion and aggregation. Liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) assays were developed and used to measure lipid mediators in rat brain and human platelets. Ageing in rat brain was accompanied with several changes in the prostanoid and hydroxy fatty acid profiles. Supplementing the diet with EPA or DPA at a daily dose of 200 mg/kg for 8 weeks prevented these changes and decreased levels of PGE2. DPA changed the profile of hydroxy fatty acids synthesised in the brain tissue of young animals. This study has shown that levels of eicosapentaenoylethanolamide (EPA-EA) increase in the brain as a result of ageing and that this is accompanied by an increase in levels of anandamide. Feeding aged animals EPA or DPA further increased the levels of EPA-EA but prevented any change in the level of anandamide. Niacin is used to treat hypercholesterolaemia although it is associated with an unpleasant PGD2 mediated skin flush. This exploratory study has shown that human platelets treated with niacin did not show any changes in their prostanoid and hydroxy fatty acid profiles. Platelets treated with EPA showed increased production of TXB3 and 12-HEPE. Niacin augmented the effects of EPA on human platelet mediator synthesis. Overall, this study has demonstrated that EPA can change brain and platelet lipid mediator synthesis and has provided evidence that could explain some of the neuroprotective and cardioprotective actions of this PUFA.
63

Characterisation of anandamide uptake in resting and activated murine cells

Fredriksson Sundbom, Marcus January 2015 (has links)
Modifying the metabolism of the body’s own endocannabinoids is a novel approach for analgesia. Two key catabolic enzymes are fatty acid amide hydrolase (FAAH) and inflammation-inducible cyclooxygenase 2 (COX-2). The cellular uptake of the key endocannabinoid anandamide (AEA) has been found to be regulated by its FAAH-catalysed intracellular degradation, but COX-2 has not been investigated in this respect. We aimed to find out whether or not COX-2 in an in vitro inflammation setting would be able to gate AEA uptake. To achieve this, C6 cells and Raw 264.7 cells were stimulated with LPS/INF-γ and lysates then analyzed by immunoblot in order to verify COX-2 expression. AEA cellular uptake was quantified using a radioassay with [3H]-AEA. It was found that COX-2 was not inducible in C6 cells using the LPS/INF-γ conditions studied, while it was inducible in Raw 264.7 cells. AEA uptake in the COX-2-induced Raw 264.7 cells was not reduced by inhibitors of this enzyme. FAAH appeared to be down-regulated in the stimulated Raw 264.7 cells, and this was reflected in an overall lower AEA uptake. Our interpretation of the data points to FAAH as gating AEA uptake. Additional experiments are required to validate our findings by verifying significance.

Page generated in 0.1977 seconds