• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elucidating the anti-inflammatory actions of docosahexaenoic acid (DHA) in preventing ovarian cancer

Starkweather, Kara Nicole 01 September 2020 (has links)
Ovarian cancer is the fifth most lethal cancer in women (1) and the most lethal gynecological malignancy. In 2018, there were approximately 22,240 new diagnosed cases of ovarian cancer and 14,070 deaths in the United States alone (2). The lifetime risk for developing ovarian cancer in the United States is 1.3% or approximately 1 in 78 women. The five-year survival rate for women with ovarian cancer is a grim 47.6% (2) while the average five year survival rate for all cancers is about 68%. This dismal prognosis for ovarian cancer patients indicates the critical need for improved treatment options, efficient early detection methods and effective preventative measures for ovarian cancer (1). The objective of this study was to determine if DHA causes a reduction in cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) by blocking the activation of NF-κB regulated transcription in the ovary. DHA is a 22 carbon long-chain omega-3 polyunsaturated fatty acid that is biologically derived from Alpha-linolenic acid (ALA) found in flaxseed. COX-2 is an enzyme that catalyzes the conversion of arachidonic acid to prostaglandins. Prostaglandin E2 (PGE2) is a key regulator of inflammation which has been shown to be highly associated with ovarian cancer development and progression. Our laboratory studies ovarian cancer in the laying hen because it is the only known animal model to naturally develop ovarian cancer that both pathologically and histologically matches that of the human form of the disease. Dietary flaxseed is one of the richest vegetable sources of omega-3 polyunsaturated fatty acids. Our previous studies have shown that in laying hens, a long-term flaxseed supplemented diet reduces the incidence and severity of ovarian cancer and decreases COX-2 and PGE2. It was hypothesized that DHA, derived from ALA found in flaxseed, decreases inflammation in the ovaries by suppressing the activation of COX-2 and the production of PGE2 through inhibition of the NF-κB pathway. For this study, an NF-κB reporter plasmid was transfected into HEK293 cells. The reporter plasmid (“met-luc”) produces a secreted luciferase allowing sequential analysis of media from DHA and TNF-α treated cells to assess changes in NF-κB transcriptional activation. Tumor necrosis factor alpha (TNF-α)-induced activation of NF-κB was used as a positive control. NF-κB activation was also assessed by measuring its nuclear translocation and cytoplasmic accumulation through immunocytochemistry (ICC) and western blot analysis. In a parallel study, immortalized ovarian surface epithelial (IOSE) cells were challenged with the same treatments of DHA and TNF-α. In these cells, COX-2 mRNA was assessed through RT-qPCR and COX-2 protein expression was analyzed through ICC and western blot.Our results indicate that DHA acts in a cell specific manner to reduce inflammation associated with cancer. We have found that in HEK293 cells DHA reduces TNFα induced NF-κB reporter activity. In contrast, ALA does not affect NF-κB reporter activity. HEK293 cells treated with TNFα alone indicated a dose-dependent increasing trend in nuclear translocation of the NF-κB p65 subunit and a decreasing trend in cytoplasmic p65, suggesting potential increased pathway activation. ICC suggests DHA treatment causes increased cytoplasmic sequestration of the NF-κB p65 subunits indicating inhibition of TNFα induced NF-κB activation. Western blot data also indicates a decreasing trend in nuclear NFκB p65 when cells are pretreated with DHA and subsequently challenged with TNF. The IOSE cells, were the only cells out of the cell lines tested (BG1, HEYC2, TOV112D, SKOV3, HEK293) to express COX-2. In these IOSE cells, TNFα alone showed a dose-dependent increasing trend in COX-2 protein (analyzed through ICC and western blot) and mRNA levels (analyzed through RT-qPCR). ICC analysis revealed that DHA reduces TNF induced COX-2 protein expression. However, the western blot did not further support this observation. Only a slight non-significant reduction with DHA treatment was observed. In addition, both DHA and TNFα, while also not significant, seemed to increase mRNA levels of COX-2 compared to control. This slight decreasing trend in COX-2 protein expression and increase in mRNA, could indicate a possible post-transcriptional mechanism of regulation of COX-2 by DHA independent of NF-κB in the IOSE cells. These data suggest that DHA could act via distinct mechanisms in a cell specific manner to potentially reduce COX-2 and subsequently PGE2 levels. DHA can act at the transcriptional level by reducing the nuclear translocation of NF-κB and transcriptional activation of NF-κB target genes such as COX-2 in some cell types. DHA also has the potential to work via a post-transcriptional mechanism to inhibit COX-2 and in turn reduce PGE2 levels. Both mechanisms ultimately have the potential to decrease the inflammation associated with ovarian cancer. This study describes the anti-inflammatory action of dietary flaxseed consumption, making flaxseed supplementation a promising preventive measure for reducing the risk of ovarian carcinogenesis.
2

COPLANAR PCB-INDUCED INFLAMMATION AND DIETARY INTERVENTIONS

Eske, Katryn Elizabeth 01 January 2013 (has links)
Diseases, such as cardiovascular disease (CVD), are linked to chronic low levels of inflammation. This inflamed state is the product of risk factors including exposure to environmental pollutants, such as polychlorinated biphenyls (PCBs), which are correlated with increased risk for CVD and diabetes. In response to this health risk, our research addresses the mechanisms by which coplanar PCBs elicit an inflammatory response and the mitigation of PCB-induced inflammation through dietary intervention using docosahexaenoic acid (DHA), an omega-3 lipid. Investigators from the University of Kentucky Engineering Department are developing remediation technologies that detoxify PCBs through dechlorination. We studied the cellular toxicity of coplanar PCB 77 remediation products in primary vascular endothelial cells. The dechlorination products elicited different toxicological responses, which were less than the parent compound and contributed to the overall inflammatory response. The presence of PCB 77 at any concentration was sufficient to promote an inflammatory response, which was attenuated with complete dechlorination. PCB 77 is a good model for coplanar PCB-induced toxicity, but in environmental and human samples, coplanar PCB 126 is detected more frequently. Using different doses of PCB 126, we determined that acute exposure to 5 μmol PCB 126/kg mouse was sufficient to produce an inflammatory response without inducing a toxic wasting phenotype. PCB-induced inflammation was attenuated in vitro by DHA-derived neuroprostanes. Applying this information, we fed mice a DHA-enriched diet and exposed them to PCB 126. Liver and adipose lipid profiles confirm an increase in omega-3 fatty acid composition and DHA metabolites, and changes in gene expression indicate a heightened anti-oxidant response in the presence of PCB-induced inflammation. These data provide an overview of the in vivo response to a PCB-induced inflammation after DHA dietary feeding. We have demonstrated that PCB-induced endothelial dysfunction is propagated through lipid domains called caveolae. Caveolae are also signaling domains for toll-like receptor 4 (TLR4), and receptor for lipopolysaccharide (LPS). Similar to PCBs, TLR4 signaling is inhibited by DHA. We compared the caveolae-associated signaling response after exposure to coplanar PCB 126 or LPS. The domain localization of caveolae was altered by both PCB 126 and LPS. Our study determined that PCB 126-induced inflammation was not inhibited by a TLR4-specific inhibitor, but caveolae-based signaling was critical to both PCB 126- and LPS-induced inflammation. Environmental pollutants, such as coplanar PCBs, are risk factors in the development of chronic diseases. Here we investigate possible signaling pathways associated with environmental toxicity and apply potential dietary interventions with omega-3 lipids.
3

Luminal Bioavailability of Orally Administered ω-3 PUFAs in the Distal Small Intestine, and Associated Changes to the Ileal Microbiome, in Humans with a Temporary Ileostomy

Nana, G., Mitra, S., Watson, H., Young, C., Wood, H.M., Perry, S.L., Race, Amanda D., Quirke, P., Toogood, G.J., Loadman, Paul, Hull, M.A. 06 July 2021 (has links)
Yes / Background: Oral administration of purified omega-3 (ω-3) PUFAs is associated with changes to the fecal microbiome. However, it is not known whether this effect is associated with increased PUFA concentrations in the gut. Objectives: We investigated the luminal bioavailability of oral ω-3 PUFAs (daily dose 1 g EPA and 1g DHA free fatty acid equivalents as triglycerides in soft-gel capsules, twice daily) and changes to the gut microbiome, in the ileum. Methods: Ileostomy fluid (IF) and blood were obtained at baseline, after first capsule dosing (median 2 h), and at a similar time after final dosing on day 28, in 11 individuals (median age 63 y) with a temporary ileostomy. Fatty acids were measured by LC–tandem MS. The ileal microbiome was characterized by 16S rRNA PCR and Illumina sequencing. Results: There was a mean 6.0 ± 9.8-fold and 6.6 ± 9.6-fold increase in ileal EPA and DHA concentrations (primary outcome), respectively, at 28 d, which was associated with increased RBC ω-3 PUFA content (P ≤ 0.05). The first oral dose did not increase the ileal ω-3 PUFA concentration except in 4 individuals, who displayed high luminal EPA and DHA concentrations, which reduced to concentrations similar to the overall study population at day 28, suggesting physiological adaptation. Bacteroides, Clostridium, and Streptococcus were abundant bacterial genera in the ileum. Ileal microbiome variability over time and between individuals was large, with no consistent change associated with acute ω-3 PUFA dosing. However, high concentrations of EPA and DHA in IF on day 28 were associated with higher abundance of Bacteroides (r2 > 0.86, P < 0.05) and reduced abundance of other genera, including Actinomyces (r2 > 0.94, P < 0.05). Conclusions: Oral administration of ω-3 PUFAs leads to increased luminal ω-3 PUFA concentrations and changes to the microbiome, in the ileum of individuals with a temporary ileostomy.
4

Immunomodulation of the IgE dependent immune response by docosahexaenoic acid

Koch, Christin 26 March 2009 (has links)
Der globale Prävalenzanstieg allergischer Erkrankungen wird mit der westlichen Ernährung und einem sich ändernden Fettsäurespektrum assoziiert. Die omega-3 Fettsäure Docosahexaensäure (DHA) wurde bereits bei verschiedenen chronisch-entzündlichen Erkrankungen erfolgreich therapeutisch eingesetzt. Die dabei zugrunde liegenden Wirkmechanismen sind jedoch nicht vollständig geklärt. Deshalb wurde hier der molekulare Mechanismus der DHA-vermittelten Hemmung der IgE-Produktion in humanen B-Zellen sowie der verminderten Differenzierung IgE-produzierender Plasmazellen in vitro untersucht. Analysen der beteiligten Signaltransduktionswege offenbarten eine Reduktion der IL-4-abhängigen STAT6-Phosphorylierung und der CD40-vermittelten NFkappaB-Translokation, was zu einer Inhibition des IgE-Klassenwechsels auf dem Niveau des epsilon-Keimbahntranskriptes sowie der Aktivierungsinduzierten Desaminase führte. Weiterhin wurde in einer randomisierten, kontrollierten Doppelblindstudie die Supplementierung mit hochdosierter DHA bei Patienten mit atopischem Ekzem hinsichtlich klinischer und immunologischer Parameter geprüft. Dabei führte DHA zu einer Reduktion des Schweregrades der Erkrankung und zu einer verminderten IgE-Produktion anti-CD40/IL 4-stimulierter Blutzellen ohne Beeinflussung des Serum-IgE-Spiegels. Schließlich wurden die lokalen Prozesse nach DHA-Verabreichung in einem Mausmodell für proteininduzierte Dermatitis analysiert. Dabei war die Reduktion der klinischen Ekzemausprägung mit der verminderten Zahl dermaler CD8+ T-Zellen verbunden. Andere histologische Parameter und das Serum-IgE blieben jedoch unbeeinflusst. Durch die Fähigkeit von DHA, in den IgE-Klassenwechsel in B-Zellen einzugreifen, stellt die Supplementierung mit DHA somit eine mögliche präventive Maßnahme gegen allergische Erkrankungen dar. Ebenso ist DHA in der Lage, den Schweregrad des atopischen Ekzems durch die positive Beeinflussung lokaler inflammatorischer Prozesse signifikant zu verbessern. / The prevalence of allergic diseases has increased worldwide. Westernised diet with its changing polyunsaturated fatty acid (PUFA) proportions is considered to contribute to this development. The omega-3 PUFA Docosahexaenoic acid (DHA) has been reported to be antiinflammatory, but its way of action is not completely understood. Initially, the molecular mechanisms of DHA impact on IgE production in human B cells were examined in vitro. Thereby, DHA inhibited IgE production and the differentiation of IgE secreting cells. This was mediated through direct inhibition of the immunoglobulin isotype switching process by decreasing epsilon germline transcript and activation induced desaminase transcription. Analysis of involved signalling pathways revealed an inhibition of IL-4 driven STAT6 phosphorylation and a reduced NFkappaB translocation into nucleus upon CD40 ligation. Next, in a randomised, double bind, controlled clinical study the efficacy of high-dose DHA supplementation in atopic eczema was determined by investigating the impact on clinical and immunological parameters. In the DHA, but not in control group a clinical improvement of atopic eczema and a reduction of CD40/IL-4 mediated IgE synthesis of peripheral blood cells were observed whereas serum IgE levels remained unchanged. Finally, in a mouse model the impact of oral DHA application on allergen induced dermatitis as well as the underlying local mechanisms were investigated. Thereby, the DHA mediated reduction of clinical skin score was associated with decreased dermal CD8+ T cell numbers, whereas other histological parameters or serum IgE values were not affected. In summary the results indicate that dietary DHA may be effective in prevention of allergic diseases by interference with the IgE switching process and improve the clinical outcome of atopic eczema by its positive impact on local inflammatory processes.
5

Treatment of Hypertriglyceridemia with Omega-3 Fatty Acids: A Systematic Review

Lewis, Amanda Gloria 29 June 2004 (has links) (PDF)
Purpose: To 1) critically appraise available randomized controlled trials (RTCs) addressing the efficacy of long-chain ω-3 fatty acids as a secondary prevention agent of hypertriglyceridemia, and 2) make recommendations for clinical practice. Data Sources: All RCTs identified from several databases from 1993-2003 were reviewed by two independent reviewers who extracted data from each study and used the previously tested Boyack and Lookinland Methodological Quality Index (MQI) to determine study quality. Results: Ten studies reported long-chain ω-3 fatty acids to be effective in the treatment of hypertriglyceridemia. The average decrease in triglycerides (TG) was 29%, total cholesterol (TC) 11.6%, very low density lipoprotein (VLDL) 30.2%, and low-density lipoprotein (LDL) 32.5%. One study found LDLs to increase by 25%. The average increase in high-density lipoprotein (HDL) was 10%. The overall average MQI score was 36% (26%-54%). Many of the RCTs had serious shortcomings including short duration, lack of a power analysis, no intention to treat analysis, no report of blind assessment of outcome, and lack of dietary control as a confounding variable. Conclusions/Implications: Overall study methodology was weak. Although the evidence supporting the use of long-chain ω-3 fatty acids in the secondary prevention of hypertriglyceridemia is reasonably strong, until there are larger RCTs of stronger methodological quality, it is not recommended to treat hypertriglyceridemia with ω-3 fatty acid supplementation in lieu of lipid lowering medications.
6

A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota

Watson, H., Mitra, S., Croden, F.C., Taylor, M., Wood, H.M., Perry, S.L., Spencer, Jade A., Quirke, P., Toogood, G.J., Lawton, C.L., Dye, L., Loadman, Paul, Hull, M.A. 2017 September 1926 (has links)
Yes / Abstract Objective Omega-3 polyunsaturated fatty acids (PUFAs) have anticolorectal cancer (CRC) activity. The intestinal microbiota has been implicated in colorectal carcinogenesis. Dietary omega-3 PUFAs alter the mouse intestinal microbiome compatible with antineoplastic activity. Therefore, we investigated the effect of omega-3 PUFA supplements on the faecal microbiome in middle-aged, healthy volunteers (n=22). Design A randomised, open-label, cross-over trial of 8 weeks’ treatment with 4 g mixed eicosapentaenoic acid/docosahexaenoic acid in two formulations (soft-gel capsules and Smartfish drinks), separated by a 12-week ‘washout’ period. Faecal samples were collected at five time-points for microbiome analysis by 16S ribosomal RNA PCR and Illumina MiSeq sequencing. Red blood cell (RBC) fatty acid analysis was performed by liquid chromatography tandem mass spectrometry. Results Both omega-3 PUFA formulations induced similar changes in RBC fatty acid content, except that drinks were associated with a larger, and more prolonged, decrease in omega-6 PUFA arachidonic acid than the capsule intervention (p=0.02). There were no significant changes in α or β diversity, or phyla composition, associated with omega-3 PUFA supplementation. However, a reversible increased abundance of several genera, including Bifidobacterium, Roseburia and Lactobacillus was observed with one or both omega-3 PUFA interventions. Microbiome changes did not correlate with RBC omega-3 PUFA incorporation or development of omega-3 PUFA-induced diarrhoea. There were no treatment order effects. Conclusion Omega-3 PUFA supplementation induces a reversible increase in several short-chain fatty acid-producing bacteria, independently of the method of administration. There is no simple relationship between the intestinal microbiome and systemic omega-3 PUFA exposure. / NIHR/EME Yorkshire Cancer Research (YCR)
7

The effect of eicosapentaenoic acid on brain and platelet produced bioactive lipid mediators : the effect of eicosapentaenoic acid, docosapentaenoic acid and other polyunsaturated fatty acids on the eicosanoids and endocannabinoids produced by rat brain and human platelets using electrospray ionisation tandem mass spectrometry-based analysis

Mir, Adnan Ahmed January 2009 (has links)
Eicosapentaenoic acid (EPA) is a polyunsaturated fatty acid (PUFA) with neuroprotective and cardioprotective properties. It is thought that some of the actions of EPA may be attributed to its elongated metabolite, the PUFA docosapentaenoic acid (DPA). Docosahexaenoic acid (DHA) and arachidonic acid (AA) are bioactive PUFA ubiquitously expressed in neural tissues. EPA and AA can be converted by cyclooxygenase (COX) to prostanoids and by lipoxygenase (LOX) to hydroxy fatty acids. PUFA can also be converted to ethanolamides in the brain. These mediators are involved in physiological and pathological processes in many bodily systems. The purpose of this study was to examine the production of eicosanoids, hydroxy fatty acids and fatty acid ethanolamides in young and aged rat brain following EPA or DPA enriched diets. The effects of specific PUFA on human platelet eicosanoid production were also investigated as these mediators play a role in adhesion and aggregation. Liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) assays were developed and used to measure lipid mediators in rat brain and human platelets. Ageing in rat brain was accompanied with several changes in the prostanoid and hydroxy fatty acid profiles. Supplementing the diet with EPA or DPA at a daily dose of 200 mg/kg for 8 weeks prevented these changes and decreased levels of PGE2. DPA changed the profile of hydroxy fatty acids synthesised in the brain tissue of young animals. This study has shown that levels of eicosapentaenoylethanolamide (EPA-EA) increase in the brain as a result of ageing and that this is accompanied by an increase in levels of anandamide. Feeding aged animals EPA or DPA further increased the levels of EPA-EA but prevented any change in the level of anandamide. Niacin is used to treat hypercholesterolaemia although it is associated with an unpleasant PGD2 mediated skin flush. This exploratory study has shown that human platelets treated with niacin did not show any changes in their prostanoid and hydroxy fatty acid profiles. Platelets treated with EPA showed increased production of TXB3 and 12-HEPE. Niacin augmented the effects of EPA on human platelet mediator synthesis. Overall, this study has demonstrated that EPA can change brain and platelet lipid mediator synthesis and has provided evidence that could explain some of the neuroprotective and cardioprotective actions of this PUFA.
8

Assessing EPA + DHA requirements of Sparus aurata and Dicentrarchus labrax : impacts on growth, composition and lipid metabolism

Houston, Sam James Silver January 2018 (has links)
The gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) require n-3 long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for optimal growth and health. Due to the rapid growth of global aquaculture the quantity of marine oils used in aquafeeds has been limited, yet the overall quantity of oil in an aquafeed has increased by the addition of vegetable oil (VO) to supply dietary energy. For aquaculture to continue to grow more fish must be produced with less marine ingredients, yet EPA and DHA must be maintained at levels above fish requirements. This project set out to re-evaluate the requirement for EPA and DHA in gilthead seabream and European seabass. Two dose-response studies were designed and executed where juvenile seabream and seabass were fed one of six levels of EPA+DHA (0.2 – 3.2 % as fed). Biometric data were collected and analysed to determine new requirement estimates for EPA+DHA for fish of two weight ranges (24 – 80 g and 80 – 200 g). The effects of the dietary LC-PUFA gradient on lipid composition and metabolism were also considered.
9

Life cycle assessment of DHA produced by microalgae using food waste : Assessing global warming, fossil energy use and effects on biodiversity

Bartek, Louise January 2020 (has links)
Biodiversity is a key component for life on Earth since it contributes to clean water, fresh air and food security. Today, fatty fish farmed in aquaculture is the main Omega 3 source consumed by humans, including the essential fatty acid docosahexaenoic acid (DHA). DHA origin from plants and accumulate in fish via the marine food web. Therefore, DHA in the form of fish oil is often added to fish feed used in aquaculture. This process is dependent on fossil energy and marine raw materials, which infer increased global warming, damage to ecosystem and ultimately loss of biodiversity. In order to reduce the environmental impact, the essential fatty acid could instead be derived from the marine primary producer of DHA: microalgae. In this thesis, a life cycle approach was used to assess global warming, use of fossil fuels and Ecosystem damage when DHA is produced by the microalgae Crypthecodinium Cohnii. The environmental impact was modelled using SimaPro 9 and assessed with CML-IA and ReCiPe Endpoint. In this model, volatile fatty acids derived from dark fermentation of food waste was used as feedstock to the algae. The studied systems consisted of two parallel scenarios, one conventional food waste-to-biogas with DHA from fish oil and one conceptual food waste-to-DHA with DHA from algae oil. The aim was to evaluate the future potential of DHA produced from algae, by assessing and comparing environmental impact to DHA produced from Peruvian anchovy. For every ton DHA produced by microalgae the assessed impact was -1.9E+02 tonCO2e, -1.9 TJ and 9.7E-04 species.yr. DHA produced by microalgae using VFA from food waste was shown to mitigate global warming and reduce use of fossil fuels. The most important conclusion show that DHA from algae infer 37% lower biodiversity loss in comparison to DHA from Peruvian anchovy. Thus, DHA from microalgae could reduce dependency on marine raw material and decrease biodiversity loss. / Biodiversitet är en nyckelkomponent för liv på jorden eftersom det bidrar till rent vatten, frisk luft och säker livsmedelsproduktion. Idag är fet fisk odlad i vattenbruk den viktigaste källan till Omega 3 som konsumeras av människor, inklusive den essentiella fettsyran dokosahexaensyra (DHA). Då DHA härstammar från växter och ackumuleras i fisk via den marina näringskedjan, tillsätts DHA ofta till fiskfoder i form av fiskolja. Denna process är beroende av fossil energi och marina råmaterial, som leder till ökad global uppvärmning, skadar naturliga ekosystem och orsakar förlust av biologisk mångfald. För att minska miljöpåverkan skulle den essentiella fettsyran istället kunna produceras från den marina primärproducenten av DHA: mikroalger. I detta examensarbete användes livscykelanalys för att utvärdera miljöpåverkan med avseende på global uppvärmning, användning av fossila bränslen och påverkan på biodiversitet, då DHA produceras av mikroalgen Crypthecodinium Cohnii. Flyktiga fettsyror, VFA, som bildas vid mörk fermentering av matavfall användes som råmaterial till algerna. De studerade systemen bestod av två parallella scenarier, en konventionell matavfall-till-biogas med DHA från fiskolja och en konceptuell matavfall-till-DHA med DHA från algolja. Systemet modellerades i SimaPro 9 och miljöpåverkan beräknades med CML-IA och ReCiPe Endpoint. Syftet var att utvärdera DHA som produceras från alger genom att beräkna miljöpåverkan och jämföra med DHA producerad från peruansk ansjovis. För varje ton DHA producerat av mikroalger var påverkan -1.9E+02 tonCO2e, -1.9 TJ och 9.7E-04 arter per år. DHA producerad av mikroalger där VFA från matavfall använts som näring, visade sig minska den globala uppvärmningen, reducera användningen av fossila bränslen och innebar 37% lägre förlust av biologisk mångfald jämfört med DHA producerad från peruansk ansjovis. Denna studie visade därmed att DHA från mikroalger kunde minska beroendet av marina råmaterial och minska förlusten av biologisk mångfald.
10

The effect of eicosapentaenoic acid on brain and platelet produced bioactive lipid mediators. The effect of eicosapentaenoic acid, docosapentaenoic acid and other polyunsaturated fatty acids on the eicosanoids and endocannabinoids produced by rat brain and human platelets using electrospray ionisation tandem mass spectrometry-based analysis.

Mir, Adnan A. January 2009 (has links)
Eicosapentaenoic acid (EPA) is a polyunsaturated fatty acid (PUFA) with neuroprotective and cardioprotective properties. It is thought that some of the actions of EPA may be attributed to its elongated metabolite, the PUFA docosapentaenoic acid (DPA). Docosahexaenoic acid (DHA) and arachidonic acid (AA) are bioactive PUFA ubiquitously expressed in neural tissues. EPA and AA can be converted by cyclooxygenase (COX) to prostanoids and by lipoxygenase (LOX) to hydroxy fatty acids. PUFA can also be converted to ethanolamides in the brain. These mediators are involved in physiological and pathological processes in many bodily systems. The purpose of this study was to examine the production of eicosanoids, hydroxy fatty acids and fatty acid ethanolamides in young and aged rat brain following EPA or DPA enriched diets. The effects of specific PUFA on human platelet eicosanoid production were also investigated as these mediators play a role in adhesion and aggregation. Liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) assays were developed and used to measure lipid mediators in rat brain and human platelets. Ageing in rat brain was accompanied with several changes in the prostanoid and hydroxy fatty acid profiles. Supplementing the diet with EPA or DPA at a daily dose of 200 mg/kg for 8 weeks prevented these changes and decreased levels of PGE2. DPA changed the profile of hydroxy fatty acids synthesised in the brain tissue of young animals. This study has shown that levels of eicosapentaenoylethanolamide (EPA-EA) increase in the brain as a result of ageing and that this is accompanied by an increase in levels of anandamide. Feeding aged animals EPA or DPA further increased the levels of EPA-EA but prevented any change in the level of anandamide. Niacin is used to treat hypercholesterolaemia although it is associated with an unpleasant PGD2 mediated skin flush. This exploratory study has shown that human platelets treated with niacin did not show any changes in their prostanoid and hydroxy fatty acid profiles. Platelets treated with EPA showed increased production of TXB3 and 12-HEPE. Niacin augmented the effects of EPA on human platelet mediator synthesis. Overall, this study has demonstrated that EPA can change brain and platelet lipid mediator synthesis and has provided evidence that could explain some of the neuroprotective and cardioprotective actions of this PUFA.

Page generated in 0.0573 seconds