• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 728
  • 396
  • 110
  • 60
  • 51
  • 37
  • 22
  • 11
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 2111
  • 2111
  • 1002
  • 638
  • 392
  • 382
  • 361
  • 322
  • 314
  • 272
  • 254
  • 236
  • 227
  • 144
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

A Study of the Interfacial reaction between Pt and Sn

Fang, Yuang-shing 19 July 2012 (has links)
The orientation relationship and interfaces of PtSn4 and PtSn with the Pt (001) and (111) surfaces have been studied with transmission electron microscopy. Pt was evaporated onto the NaCl (001) and (111) surfaces to form epitaxial Pt thin films and Sn was evaporated onto the Pt films at different temperature to form PtSn4 and PtSn. Pt was evaporated onto the NaCl (001) and (111) surfaces at 350 ¢J to form epitaxial Pt thin films of [001] and [111] zone axes, respectively. Some grains are in random orientation and other as ring pattern. The grain size was at about 10-20 nm. Sn was evaporated onto the Pt surface at 150 ¢J to form PtSn4 and at 200 ¢J to form PtSn. No good orientation relationships were formed on both the PtSn4/ Sn and the PtSn/ Sn interfaces. Heterogeneous nucleation theory, predicts that PtSn should form before PtSn4, but PtSn4 was observed to the first to form. The possible reasons were discussed. Keywords: PtSn4/ Sn interface, PtSn/ Sn interface, orientation relationships, thin films, evaporator, transmission electron microscopy
442

A Study of the Process and Causes of Abeta(25-35) Amyloid Formation

Ridinger, Katherine V. 2009 December 1900 (has links)
Amyloid fibrils results from a type of ordered polypeptide aggregation that is associated with ailments such as Alzheimer's disease (AD). Annually, millions of people in the United States alone develop and die from AD. Therefore, it is necessary to understand not only the process of amyloid formation, but also the causes of this specific type of aggregation. This study used ABeta(25-35) since it is a fragment of the Alzheimer?s peptide that behaves like the full length peptide found in patients with AD. To study the process of amyloid formation, several methods were used so that a more complete picture of the stepped aggregation process could be realized. Several oligomeric species were detected and described many of which could not have been observed without using the complete battery of methods utilized here. The oligomeric species detected included a novel 'rolled sheet' that appeared to be the immediate precursor of amyloid fibrils, and two supermolecular species that appear after amyloid fibrils were formed. In determining the causes of amyloid formation, two significant discoveries were made. First, by partial sequence randomization, truncation, and Ala scanning mutagenesis, the critical amyloidogenic region of ABeta(25-35) was found to be residues 30-35. This critical core region is important because it is thought to be the region that initiates amyloid formation, therefore knowing the residues involved in the region is a useful tool for developing methods of fibril formation prevention. Second, by inserting all naturally occurring amino acids into position 34 of ABeta(25-35), three distinct classes of variants were observed and the effect of several physiochemical properties on amyloidosis were examined. Hydrophobicity, solubility, and ?-strand propensity were found to affect aggregation to the greatest extent. Also within these two studies, our results suggest that early oligomers are the cytotoxic species as opposed to amyloid fibrils or other larger macromolecular assemblies.
443

Study of Midgut Bacteria in the Red Imported Fire Ant, Solenopsis invicta Büren (Hymenoptera: Formicidae)

Medina, Freder 2010 May 1900 (has links)
Ants are capable of building close associations with plants, insects, fungi and bacteria. Symbionts can provide essential nutrients to their insect host, however, the development of new molecular tools has allowed the discovery of new microorganisms that manipulate insect reproduction, development and even provide defense against parasitoids and pathogens. In this study we investigated the presence of bacteria inside the Red Imported Fire Ant midgut using molecular tools and transmission electron microscopy. The midgut bacteria were also characterized by their morphology, biochemical activity, and antibiotic resistance profile. After isolation, culture, and characterization of these bacteria, the molecular analysis revealed ten unique profiles which were identified to at least the genus level, Enterococcus sp./durans, Klebsiella ornithinolytica, Kluyvera cryocrescens, Lactococ-cus garvieae, Pseudomonas aeruginosa, Achromobacter xylosoxidans, Bacillus pumilus, Listeria innucua, Serratia marcescens, and an uncultured bacterium from the Entero-bacteriaceae. New SEM and TEM techniques revealed a possible functional association of endosymbiotic bacteria with the insect host, and it also showed the absence of bacteriocytes in the epithelial cells of the midgut. The PCR results, from the bacteria abundance and distribution studies, showed that Enterococcus sp., Kluyvera cryocres-cens and Lactococcus garvieae are the most abundant species, but they are not consistently found in all sites throughout the southeastern United States. Kluyvera cryocrescens, Serratia marcescens, and an uncultured bacterium (isolate #38: Enterobacteriaceae) were genetically modified with the plasmid vector pZeoDsRed and successfully reintroduced into fire ant colonies. Strong fluorescence of DsRed was detected up to seven days after introduction. The transformed bacteria can still be rescued after pupal emergence; however most were passed out in the meconium. We further demonstrated that nurses contributed to the spread of the transformed bacteria within the colony by feeding the meconium to naive larvae. Although the role of midgut bacteria in the fire ant is still unknown, we have no indication that they cause any pathology. Studies emphasizing the role of these bacteria in fire ant physiology are still ongoing. These results are the foundation for a fire ant biological control program using endosymbiotic bacteria as vectors to introduce foreign genes that express proteins with insecticidal properties.
444

Probing Iron Accumulation in Sacchromyces cerevisiae Using Integrative Biophysical and Biochemical Techniques

Miao, Ren 2010 December 1900 (has links)
Iron is an essential element for life. It is involved in a number of biological processes, including iron sulfur (Fe/S) cluster assembly and heme biosynthesis. However it is also potentially toxic due to its ability to induce formation of reactive oxygen species (ROS) via Fenton chemistry. Therefore its uptake, trafficking and utilization must be regulated to avoid its toxicological effect. It has been recently discovered that Fe/S cluster biosynthesis machinery plays a key role in the cellular iron regulation and its disruption leads to impaired iron regulation and iron accumulation within mitochondria. The iron accumulation resulted from impaired Fe/S cluster assembly in the eukaryotic model organism Saccharomyces cerevisiae (baker’s yeast) was studied. Various biophysical (e.g. Mössbauer, EPR, UV-vis spectroscopy) and biochemical (e.g. Western blots, PCR, enzyme activity assay, etc.) techniques were used to characterize the iron content in yeast mitochondria isolated from several mutants strains. In these mutants one of the proteins involved in Fe/S cluster biosynthesis (Yah1p and Atm1p) is mutated and iron regulation and metabolism are disrupted. By integrating the results obtained from these different methods, it was determined that excess iron accumulates in the mutant mitochondria as inorganic phosphate Fe(III) nano-particles exhibiting superparamagnetic behaviors. Oxygen is required for iron accumulation and nanoparticle formation. The Fe(III) nano-particles can be chemically reduced to Fe(II) then largely exported from the mitochondria. These biophysical and biochemical methods were also used to examine the iron distribution in whole yeast cells of the Aft1-1up strain in which iron regulon genes are constitutively activated and compared to that of Yah1p-depleted and wild type yeast. Constitutive activation of iron regulon genes does not alter the cellular iron distribution significantly. However disruption of Fe/S cluster assembly by Yah1p depletion causes dramatic cellular iron redistribution: the vacuolar iron is largely evacuated and most of the cellular iron probably precipitates in mitochondria as Fe(III) nanoparticles. The results provide novel insights into iron trafficking and possible signal communications between organelles within cells.
445

Correlation between morphology and mechanical properties of denture base resin cured by water bath and microwave energy

Lai, Chia-Ping 23 July 2001 (has links)
Four denture base materials of poly(methyl methacrylate) (QC-20, Pladent-20, Hygenic, and Optilon-399) were prepared by convention water bath and microwave-energy cured methods. While the resin was in the dough stage, it was packed into two molds (65 mm ¡¦15 mm ¡¦10 mm) in the fiber reinforced plastic flask. The variation of temperature with time was recorded by two thermocouples during the microwave heating at 80, 160, and 240 watts, respectively. Microwave polymerization was carried out in the same equipment. The microwave flask containing the same size of resin blocks were processed at 80, 160, 240, and 560 watts for 15, 10, 7, and 2 min, separately. Then each flask was turned over, and cured an additional 2 min at 560 watts. In the case of water-bath method, the resin in the dough stage was packed in the Brass flask, and then cured at 70¢J for 9 hours. Ten specimens were prepared for each condition studied. The surface hardness, porosity, flexural properties and solubility of both process conditions were evaluated. The samples were sectioned by microtome and stained 2 % Osmiun tetroxide, then the morphology of Optilon-399 was observed by using TEM (Transmission electron microscopy) at 160 KV. The result indicate that the flexural strength for Optilon-399 specimens prepared by water-bath method was 20 MPa higher than that prepared in microwave oven, however, there were no obvious difference between the samples cured at different power. Phase separation in two different sizes was observed in all of the Optilon-399 specimens. The larger domain was with 0.18 mm~0.67 mm diameter has dispersed rubber phase surrounded by a rubber periphery. The smaller domain with 0.1 mm diameter is rich with rubber phase. The size and distribution of the larger domain were correlated with the microwave power and curing time. The sample cured by water-bath has the largest average domain diameter (0.395¡Ó0.068 mm). In the specimens prepared by microwave method, the domain size decreased with increasing power. In additions, the domain size varied across the specimen. The size difference between the largest and the smallest domain for specimens cured at 80W was 0.03 mm, and that for specimens cured at 560W was 0.05 mm. This indicated that the larger the power watt was, the higher the morphology difference was.
446

none

Su, Erh-Nan 16 July 2002 (has links)
none
447

Metal Nitride Diffusion Barriers for Copper Interconnects

Araujo, Roy A. 14 January 2010 (has links)
Advancements in the semiconductor industry require new materials with improved performance. With the introduction of copper as the interconnect material for integrated circuits, efficient diffusion barriers are required to prevent the diffusion of copper into silicon, which is primarily through grain boundaries. This dissertation reports the processing of high quality stoichiometric thin films of TiN, TaN and HfN, and studies their Cu diffusion barrier properties. Epitaxial metastable cubic TaN (B1-NaCl) thin films were grown on Si(001) using an ultra-thin TiN (B1-NaCl) seed layer which was as thin as 1 nm. The TiN/TaN stacks were deposited by Pulsed Laser Deposition (PLD), with the TiN thickness systematically reduced from 15 to 1 nm. Microstructural studies included X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Preliminary Cu diffusion experiments showed that the TiN seed layer thickness had little or no obvious effect on the overall microstructure and the diffusion barrier properties of the TaN/TiN stacks. Epitaxial and highly textured cubic HfN (B1-NaCl) thin films (~100 nm) were deposited on MgO(001) and Si(001) using PLD. Low resistivities (~40 mu omega-cm) were measured with a four point probe (FPP). Microstructural characterizations included XRD, TEM, and HRTEM. Preliminary Cu diffusion tests demonstrated good diffusion barrier properties, suggesting that HfN is a promising candidate for Cu diffusion barriers. Cubic HfN (B1-NaCl) thin films were grown epitaxially on Si(001) substrates by using a TiN (B1-NaCl) buffer layer as thin as ~10 nm. The HfN/TiN stacks were deposited by PLD with an overall thickness less than 60 nm. Detailed microstructural characterizations included XRD, TEM, and HRTEM. The electrical resistivity measured by FPP was as low as 70 mu omega-cm. Preliminary copper diffusion tests showed good diffusion barrier properties with a diffusion depth of 2~3 nm after vacuum annealing at 500 degrees C for 30 minutes. Additional samples with Cu deposited on top of the cubic HfN/TiN/Si(001) were vacuum annealed at 500 degrees C, 600 degrees C and 650 degrees C for 30 minutes. The diffusivity of copper in the epitaxial stack was investigated using HRTEM. The measured diffusion depths, 2 Dt , were 3, 4 and 5 nm at 500 degrees C, 600 degrees C and 650 degrees C respectively. Finally, the diffusivity of Cu into epitaxial HfN was determined to be D=D0 exp(-Q/kT)cm2s-1 with D0=2.3x10-14cm2s-1 and Q=0.52eV.
448

The diffusion of phosphorus into diamond from phosphorus-doped silicon through field enhanced diffusion by optical activation

Moreno, Dickerson C., January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 107-109). Also available on the Internet.
449

The diffusion of phosphorus into diamond from phosphorus-doped silicon through field enhanced diffusion by optical activation /

Moreno, Dickerson C., January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 107-109). Also available on the Internet.
450

Corrosion of Carbon Steel Under Disbonded Coatings in Acidified Leaching Processes

2015 May 1900 (has links)
In this research, corrosion behaviour of A36 carbon steel under engineered disbonded coating was investigated in sulphuric acid solutions containing sodium chloride and iron (III) sulphate. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) analyses were carried out to study the morphology and phase composition of corrosion products formed on the carbon steel surface. The results of the SEM analysis showed that only general and pitting corrosion occurred on the carbon steel surface with the engineered crevice. The size of the pits increased as the sulphuric acid and sodium chloride concentrations increased. Moreover, the corrosion products had an open, irregular and loose structure at the pits mouth. The loose and open structure of the corrosion products facilitates diffusion of chloride ions, oxygen, water and contaminants into the carbon steel surface. In contrast, the corrosion products had a very compact and continuous structure outside the pits which provided a good protection against further corrosion. The x-ray diffraction analysis showed that the corrosion products layer mainly consisted of lepidocrocite (γ-FeOOH), goethite (α-FeOOH) and iron sulphide (FeS) on the crevice edges. The Pourbaix diagram of iron in sulphuric acid solution at room temperature indicates that iron sulphide is formed on the metal surface at different pH values. The akaganeite (β-FeOOH) diffraction peak was not identified in any spectrum which could be due to the low concentration of chloride ions in the solutions. Furthermore, the number of lepidocrocite peaks decreased as the sulphuric acid concentration increased from 10 g l-1 to 50 g l-1. The lepidocrocite is dissolved in the presence of sulphuric acid, and the dissolved ion acts as an oxidant to the metal and hence lower lepidocrocite peaks are identified. Electrochemical noise measurement (ECN) testing was also performed to investigate the corrosion process occurring on the carbon steel surface with the engineered crevice. The results of the ECN measurements showed that current increased during first few minutes and then decreased slightly. Also, the coupled potential did not change after an initial shift in negative direction. The low current flowing through the carbon steel electrodes and the constant potential showed that the crevice corrosion did not develop. These results imply that the crevice corrosion may not occur on the carbon steel surface in acidic solutions containing chloride ions.

Page generated in 0.1007 seconds