Spelling suggestions: "subject:"anda sentiment analysis."" "subject:"ando sentiment analysis.""
231 |
Big data - použití v bankovní sféře / Big data - application in bankingUřídil, Martin January 2012 (has links)
There is a growing volume of global data, which is offering new possibilities for those market participants, who know to take advantage of it. Data, information and knowledge are new highly regarded commodity especially in the banking industry. Traditional data analytics is intended for processing data with known structure and meaning. But how can we get knowledge from data with no such structure? The thesis focuses on Big Data analytics and its use in banking and financial industry. Definition of specific applications in this area and description of benefits for international and Czech banking institutions are the main goals of the thesis. The thesis is divided in four parts. The first part defines Big Data trend, the second part specifies activities and tools in banking. The purpose of the third part is to apply Big Data analytics on those activities and shows its possible benefits. The last part focuses on the particularities of Czech banking and shows what actual situation about Big Data in Czech banks is. The thesis gives complex description of possibilities of using Big Data analytics. I see my personal contribution in detailed characterization of the application in real banking activities.
|
232 |
Filtragem baseada em conteúdo auxiliada por métodos de indexação colaborativa / Content-based filtering aided by collaborative indexing methodsRafael Martins D\'Addio 10 June 2015 (has links)
Sistemas de recomendação surgiram da necessidade de selecionar e apresentar conteúdo relevante a usuários de acordo com suas preferências. Dentre os diversos métodos existentes, aqueles baseados em conteúdo faz em uso exclusivo da informação inerente aos itens. Estas informações podem ser criadas a partir de técnicas de indexação automática e manual. Enquanto que as abordagens automáticas necessitam de maiores recursos computacionais e são limitadas á tarefa específica que desempenham, os métodos manuais são caros e propensos a erros. Por outro lado, com a expansão da Web e a possibilidade de usuários comuns criarem novos conteúdos e anotações sobre diferentes itens e produtos, uma alternativa é obter esses metadados criados colaborativamente pelos próprios usuários. Entretanto, essas informações, em especial revisões e comentários, podem conter ruídos, além de estarem em uma forma desestruturada. Deste modo, este trabalho1 tem como objetivo desenvolver métodos de construção de representações de itens baseados em descrições colaborativas para um sistema de recomendação. Objetiva-se analisar o impacto que diferentes técnicas de extração de características, aliadas à análise de sentimento, causam na precisão da geração de sugestões, avaliando-se os resultados em dois cenários de recomendação: predição de notas e geração de ranques. Dentre as técnicas analisadas, observa-se que a melhor apresenta um ganho no poder descritivo dos itens, ocasionando uma melhora no sistema de recomendação. / Recommender systems arose from the need to select and present relevant content to users according to their preferences. Among several existent methods, those based on content make exclusive use of information inherent to the items. This information can be created through automatic and manual indexing techniques. While automa-tic approaches require greater computing resources and are limited to the specific task they perform, manual methods are expensive and prone to errors. On the other hand, with the expansion of theWeb and the possibility of common users to create new content and descriptions about different items and products, an alternative is to get these metadata created collaboratively by the users. However, this information, especially reviews and comments, may contain noise, be- sides being in a unstructured fashion. Thus, this study aims to develop methods for the construction of items representations based on collaborative descriptions for a recommender system. This study aims to analyze the impact that different feature extraction techniques, combined with sentiment analysis, caused in the accuracy of the generated suggestions, evaluating the results in both recommendations cenarios: rating prediction and ranking generation. Among the analyzed techniques, it is observed that the best is able to describe items in a more effcient manner, resulting in an improvement in the recommendation system.
|
233 |
Analyse d'opinion dans les interactions orales / Opinion analysis in speech interactionsBarriere, Valentin 15 April 2019 (has links)
La reconnaissance des opinions d'un locuteur dans une interaction orale est une étape cruciale pour améliorer la communication entre un humain et un agent virtuel. Dans cette thèse, nous nous situons dans une problématique de traitement automatique de la parole (TAP) sur les phénomènes d'opinions dans des interactions orales spontanées naturelles. L'analyse d'opinion est une tâche peu souvent abordée en TAP qui se concentrait jusqu'à peu sur les émotions à l'aide du contenu vocal et non verbal. De plus, la plupart des systèmes récents existants n'utilisent pas le contexte interactionnel afin d'analyser les opinions du locuteur. Dans cette thèse, nous nous penchons sur ces sujet. Nous nous situons dans le cadre de la détection automatique en utilisant des modèles d’apprentissage statistiques. Après une étude sur la modélisation de la dynamique de l'opinion par un modèle à états latents à l’intérieur d'un monologue, nous étudions la manière d’intégrer le contexte interactionnel dialogique, et enfin d'intégrer l'audio au texte avec différents types de fusion. Nous avons travaillé sur une base de données de Vlogs au niveau d'un sentiment global, puis sur une base de données d'interactions dyadiques multimodales composée de conversations ouvertes, au niveau du tour de parole et de la paire de tours de parole. Pour finir, nous avons fait annoté une base de données en opinion car les base de données existantes n'étaient pas satisfaisantes vis-à-vis de la tâche abordée, et ne permettaient pas une comparaison claire avec d'autres systèmes à l'état de l'art.A l'aube du changement important porté par l’avènement des méthodes neuronales, nous étudions différents types de représentations: les anciennes représentations construites à la main, rigides mais précises, et les nouvelles représentations apprises de manière statistique, générales et sémantiques. Nous étudions différentes segmentations permettant de prendre en compte le caractère asynchrone de la multi-modalité. Dernièrement, nous utilisons un modèle d'apprentissage à états latents qui peut s'adapter à une base de données de taille restreinte, pour la tâche atypique qu'est l'analyse d'opinion, et nous montrons qu'il permet à la fois une adaptation des descripteurs du domaine écrit au domaine oral, et servir de couche d'attention via son pouvoir de clusterisation. La fusion multimodale complexe n'étant pas bien gérée par le classifieur utilisé, et l'audio étant moins impactant sur l'opinion que le texte, nous étudions différentes méthodes de sélection de paramètres pour résoudre ces problèmes. / 2588/5000Recognizing a speaker's opinions in an oral interaction is a crucial step in improving communication between a human and a virtual agent. In this thesis, we find ourselves in a problematic of automatic speech processing (APT) on opinion phenomena in natural spontaneous oral interactions. Opinion analysis is a task that is not often addressed in TAP that focused until recently on emotions using voice and non-verbal content. In addition, most existing legacy systems do not use the interactional context to analyze the speaker's opinions. In this thesis, we focus on these topics.We are in the context of automatic detection using statistical learning models. A study on modeling the dynamics of opinion by a model with latent states within a monologue, we study how to integrate the context interactional dialogical, and finally to integrate audio to text with different types of fusion. We worked on a basic Vlogs data at a global sense, and on the basis of multimodal data dyadic interactions composed of open conversations, at the turn of speech and word pair of towers. Finally, we annotated database in opinion because existing database were not satisfactory vis-à-vis the task addressed, and did not allow a clear comparison with other systems in the state art.At the dawn of significant change brought by the advent of neural methods, we study different types of representations: the ancient representations built by hand, rigid, but precise, and new representations learned statistically, and general semantics. We study different segmentations to take into account the asynchronous nature of multi-modality. Recently, we are using a latent state learning model that can adapt to a small database, for the atypical task of opinion analysis, and we show that it allows both an adaptation of the descriptors of the written domain to the oral domain, and serve as an attention layer via its clustering power. Complex multimodal fusion is not well managed by the classifier used, and audio being less impacting on opinion than text, we study different methods of parameter selection to solve these problems.
|
234 |
Stock Market Prediction Through Sentiment Analysis of Social-Media and Financial Stock Data Using Machine LearningAl Ridhawi, Mohammad 20 October 2021 (has links)
Given the volatility of the stock market and the multitude of financial variables at play, forecasting the value of stocks can be a challenging task. Nonetheless, such prediction task presents a fascinating problem to solve using machine learning. The stock market can be affected by news events, social media posts, political changes, investor emotions, and the general economy among other factors. Predicting the stock value of a company by simply using financial stock data of its price may be insufficient to give an accurate prediction. Investors often openly express their attitudes towards various stocks on social medial platforms. Hence, combining sentiment analysis from social media and the financial stock value of a company may yield more accurate predictions. This thesis proposes a method to predict the stock market using sentiment analysis and financial stock data. To estimate the sentiment in social media posts, we use an ensemble-based model that leverages Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN) models. We use an LSTM model for the financial stock prediction. The models are trained on the AAPL, CSCO, IBM, and MSFT stocks, utilizing a combination of the financial stock data and sentiment extracted from social media posts on Twitter between the years 2015-2019. Our experimental results show that the combination of the financial and sentiment information can improve the stock market prediction performance. The proposed solution has achieved a prediction performance of 74.3%.
|
235 |
Sentimentanalys av svenska twitterinlägg / Sentiment analysis of Swedish Twitter postsGustafsson, Jonathan, Ziegler, Charley January 2021 (has links)
Intresset och deltagandet på aktiemarknaden har ökat betydligt bland svenskar. En erkänd informationskälla om aktier är inlägg på sociala medier och speciellt på Twitter. Med hjälp av sentimentanalys av dessa inlägg, så kallade tweets, kan en allmän åsikt extraheras och användas för att förutsäga framtida resultat för ett företags aktiekurser. Syftet med denna studie är att ta fram en artefakt som kan extrahera sentiment från tweets om svenska mindre företag. Företagen valdes utifrån att de var relativt småskaliga jämfört med de företag som analyserats i liknande studier genomförda inom forskningsområdet. För denna studie har data samlats in från Twitter, analyserats och bearbetats. Olika metoder har testats för att extrahera sentiment ur tweets. Resultatet från sentimentanalys med framtagen artefakt är möjlig att använda i maskininlärningsmodeller som förutsäger aktieprisers rörelse. Resultatet från experimentet kan sammanfattas med att extrahering av sentiment från tweets är svår men möjlig. Vid analys av resultatet så framgår det att det maskininlärningsbaserade tillvägagångssättet ger en ökad prestanda jämfört med det lexikonbaserade på tweets likt de som använts i denna studie. / Interest and partaking on the stock market has increased significantly among Swedes. A recognized source of information about stocks is posts on social media and Twitter in particular. With the help of sentiment analysis on these social media posts called tweets, a public opinion can be extracted and perhaps predict the future performance of a company’s stock prices. This report is written in Swedish and the aim of the study is to produce an artefact that can extract sentiment out of tweets about minor Swedish companies. The companies were chosen on the basis that they were relatively small-scale in comparison to other studies conducted in related research. For this study data has been collected from Twitter, analyzed and processed. Different methodologies have been tested to extract sentiments out of tweets. Results of sentiment analysis with produced artefact is possible to use in machine learning models predicting stock movement. Results from conducted experiments conclude that extracting sentiment from tweets is difficult but possible. Through analysis of the results, a machine learning approach shows better performance than a lexicon based with tweets like the ones used in this study.
|
236 |
Analýza postojů českých uživatelů k obchodním řetězcům na základě dat ze sociálních sítí a webových diskusí / Sentiment Analysis of Czech Social Networks and Web Discussions on Retail ChainsBolješik, Michal January 2017 (has links)
The goal of this thesis is to design and implement a system that analyses data from the web mentioning Czech grocery chain stores. Implemented system is able to download such data automatically, perform sentiment analysis of the data, extract locations and chain stores' names from the data and index the data. The system also includes a user interface showing results of the analyses. The first part of the thesis surveys the state of the art in collecting data from web, sentiment analysis and indexing documents. A description of the discussed system's design and its implementation follows. The last part of the thesis evaluates implemented system
|
237 |
Analýza sentimentu s využitím dolování dat / Sentiment Analysis with Use of Data MiningSychra, Martin January 2016 (has links)
The theme of the work is sentiment analysis, especially in terms of informatics (marginally from a linguistic point of view). The linguistic part discusses the term sentiment and language methods for its analysis, e.g. lemmatization, POS tagging, using the list of stopwords etc. More attention is paid to the structure of the sentiment analyzer which is based on some of the machine learning methods (support vector machines, Naive Bayes and maximum entropy classification). On the basis of the theoretical background, a functional analyzer is projected and implemented. The experiments are focused mainly on comparing the classification methods and on the benefits of using the individual preprocessing methods. The success rate of the constructed classifier reaches up to 84 % in the cross-validation.
|
238 |
Sdílená ekonomika v kontextu postmateriálních hodnot: případ segmentu ubytování v Praze / Sharing Economy in the Context of Postmaterial Values: The Case of Accommodation Segment in PragueSvobodová, Tereza January 2020 (has links)
This master's thesis is about the success of sharing economy in the accommodation segment in Prague. The thesis is based on theories conceptualizing sharing economy as a result of social and value change, not only as technological one. Using online review data, the user experience of shared accommodation via Airbnb and traditional via Booking are compared. Analysis is conducted with focus on users' satisfied needs and fulfilled values. For processing the data, text mining techniques (topic modelling and sentiment analysis) were employed. The major result is that in Prague the models of sharing economy accommodation meets the growing need in society to fulfil post-material values in the market much better than the models of traditional accommodation (hotels, hostels, boarding houses). In their experiences, Airbnb users reflect social and emotional values more often, even though most sharing economy accommodations in Prague do not involve any physical sharing with the host. The thesis thus brings a unique perspective on the Airbnb phenomenon in the Czech context and contributes to the discussion of why the market share of the sharing economy in the accommodation segment in Prague has been growing, while traditional models stagnated.
|
239 |
The impact of sentiment and misinformation cycling through the social media platform, Twitter, during the initial phase of the COVID-19 vaccine rolloutBurwell, Emily Grace 01 June 2022 (has links)
No description available.
|
240 |
Exploring Hybrid Topic Based Sentiment Analysis as Author Identification Method on Swedish DocumentsJakob, Bremer January 2021 (has links)
The Swedish national bank has had shifting policies when it comes to publicity and confidentiality concerning publishing of texts within the bank. For some time, texts written by commissioners within the bank were decided to be published anonymously. Later they revoked the confidentiality policy, publishing all documents publicly again. This led to emerged interests in possible shifting attitudes toward topics discussed by the commissioners when writing anonymously versus publicly. On a request, based on the interests, there are ongoing analyses being conducted with the help of language technology where topics are extracted from the anonymous and public documents respectively. The aim is to find topics related to individual commissioners with the purpose of, as accurately as possible, identifying which of the anonymous documents is written by who. To discover unique relations between the commissioners and the generated topics, this thesis proposes hybrid topic based sentiment analysis as an author identification method to be able to use sentiments of topics as identifying features of commissioners. The results showed promise in the proposed approach. Though, further research is substantial, conducting comparisons with other acknowledged author identification methods, to confirm some level of efficacy, especially on documents containing close similarities among topics.
|
Page generated in 0.1017 seconds