• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 43
  • 17
  • 14
  • 9
  • 7
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 319
  • 319
  • 90
  • 84
  • 84
  • 72
  • 66
  • 61
  • 58
  • 56
  • 54
  • 54
  • 53
  • 52
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Stock Market Prediction Through Sentiment Analysis of Social-Media and Financial Stock Data Using Machine Learning

Al Ridhawi, Mohammad 20 October 2021 (has links)
Given the volatility of the stock market and the multitude of financial variables at play, forecasting the value of stocks can be a challenging task. Nonetheless, such prediction task presents a fascinating problem to solve using machine learning. The stock market can be affected by news events, social media posts, political changes, investor emotions, and the general economy among other factors. Predicting the stock value of a company by simply using financial stock data of its price may be insufficient to give an accurate prediction. Investors often openly express their attitudes towards various stocks on social medial platforms. Hence, combining sentiment analysis from social media and the financial stock value of a company may yield more accurate predictions. This thesis proposes a method to predict the stock market using sentiment analysis and financial stock data. To estimate the sentiment in social media posts, we use an ensemble-based model that leverages Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN) models. We use an LSTM model for the financial stock prediction. The models are trained on the AAPL, CSCO, IBM, and MSFT stocks, utilizing a combination of the financial stock data and sentiment extracted from social media posts on Twitter between the years 2015-2019. Our experimental results show that the combination of the financial and sentiment information can improve the stock market prediction performance. The proposed solution has achieved a prediction performance of 74.3%.
232

Sentimentanalys av svenska twitterinlägg / Sentiment analysis of Swedish Twitter posts

Gustafsson, Jonathan, Ziegler, Charley January 2021 (has links)
Intresset och deltagandet på aktiemarknaden har ökat betydligt bland svenskar. En erkänd informationskälla om aktier är inlägg på sociala medier och speciellt på Twitter. Med hjälp av sentimentanalys av dessa inlägg, så kallade tweets, kan en allmän åsikt extraheras och användas för att förutsäga framtida resultat för ett företags aktiekurser. Syftet med denna studie är att ta fram en artefakt som kan extrahera sentiment från tweets om svenska mindre företag. Företagen valdes utifrån att de var relativt småskaliga jämfört med de företag som analyserats i liknande studier genomförda inom forskningsområdet. För denna studie har data samlats in från Twitter, analyserats och bearbetats. Olika metoder har testats för att extrahera sentiment ur tweets. Resultatet från sentimentanalys med framtagen artefakt är möjlig att använda i maskininlärningsmodeller som förutsäger aktieprisers rörelse. Resultatet från experimentet kan sammanfattas med att extrahering av sentiment från tweets är svår men möjlig. Vid analys av resultatet så framgår det att det maskininlärningsbaserade tillvägagångssättet ger en ökad prestanda jämfört med det lexikonbaserade på tweets likt de som använts i denna studie. / Interest and partaking on the stock market has increased significantly among Swedes. A recognized source of information about stocks is posts on social media and Twitter in particular. With the help of sentiment analysis on these social media posts called tweets, a public opinion can be extracted and perhaps predict the future performance of a company’s stock prices. This report is written in Swedish and the aim of the study is to produce an artefact that can extract sentiment out of tweets about minor Swedish companies. The companies were chosen on the basis that they were relatively small-scale in comparison to other studies conducted in related research. For this study data has been collected from Twitter, analyzed and processed. Different methodologies have been tested to extract sentiments out of tweets. Results of sentiment analysis with produced artefact is possible to use in machine learning models predicting stock movement. Results from conducted experiments conclude that extracting sentiment from tweets is difficult but possible. Through analysis of the results, a machine learning approach shows better performance than a lexicon based with tweets like the ones used in this study.
233

A Man Needs a Female like a Fish Needs a Lobotomy: The Role of Adjectival Nominalization in Pejorative Meaning

Robinson, Melissa Aubrey 05 1900 (has links)
This thesis documents the grammatical processes and semantic impact of innovative ways to pejoratively reference individuals through adjectival nominalization. Research on nominalized adjectives suggests that when meanings shift from having one property (1) to becoming a kind with associated properties (2), the noun form often encodes stereotypical attributes: [1] "Her hair is blonde." (hair color); [2] "He married a blonde." (female, sexy, dumb). Likewise, the linguistic phenomenon of genericity refers to classes or kinds and different grammatical structures reflect properties in different ways. In 1 and 2 above, the shift from adjectival blonde to indefinite NP a blonde moves the focus from the definitional characteristic to the prototypical. Similarly, adjectival gay [3] is definitional, but the marked, nominal form [4] adds socially-based conceptions of the "average" gay (example from Twitter): [3] jesus christ i make a joke and now im a gay man? (sexuality) [constructed]; [4] jesus christ i make a joke and now im a gay? … (flamboyant, abnormal). To investigate innovative reference via nominalization, two corpus studies based in human judgment were conducted. In the first study, a subset of the corpus (N=121) was annotated for pejoration by five additional linguists following the same guidelines as the original annotator. In the second study, 800 instances were annotated by non-experts using crowd-sourcing. In both studies we find a correspondence between nominal status and pejorative meaning.
234

Analýza postojů českých uživatelů k obchodním řetězcům na základě dat ze sociálních sítí a webových diskusí / Sentiment Analysis of Czech Social Networks and Web Discussions on Retail Chains

Bolješik, Michal January 2017 (has links)
The goal of this thesis is to design and implement a system that analyses data from the web mentioning Czech grocery chain stores. Implemented system is able to download such data automatically, perform sentiment analysis of the data, extract locations and chain stores' names from the data and index the data. The system also includes a user interface showing results of the analyses. The first part of the thesis surveys the state of the art in collecting data from web, sentiment analysis and indexing documents. A description of the discussed system's design and its implementation follows. The last part of the thesis evaluates implemented system
235

Religious Identity and Interreligious Communications: Predicting In-Group and Outgroup Bias with Topic-Sentiment Analysis

Grigoropoulou, Nikolitsa 08 1900 (has links)
Intergroup relations and the factors affecting them constitute a subject of recurring interest within the academic community. Social identity theory suggests that group membership and the value we assign to it drives the expression of in-group favoritism and outgroup prejudice, among other intergroup phenomena. The present study examines how (ir)religious identities are related to topic-sentiment polarization in the form of positive in-group and negative outgroup bias during interreligious debates in YouTube commentaries. Drawing from the propositions of social identity theory, six hypotheses were tested. The data for the study, a product of a natural experiment, are comments posted on YouTube commentary sections featuring videos of interreligious debates between (a) Christian and atheist or (b) Christian and Muslim speakers. Using topic-sentiment analysis, a multistage method of topic modeling with latent semantic analysis (LSA) and sentiment analysis, 52,607 comments, for the Christian - atheist debates, and 24,179 comments, for the Christian - Muslim debates, were analyzed. The results offer support (or partial support) to the hypotheses demonstrating identity-specific instances of topic-sentiment polarization to the predicted direction. The study offers valuable insights for the relevance of social identity theory in real-world interreligious interactions, while the successful application of topic-sentiment analysis lends support for the more systematic utilization of this method in the context of social identity theory.
236

Analýza sentimentu s využitím dolování dat / Sentiment Analysis with Use of Data Mining

Sychra, Martin January 2016 (has links)
The theme of the work is sentiment analysis, especially in terms of informatics (marginally from a linguistic point of view). The linguistic part discusses the term sentiment and language methods for its analysis, e.g. lemmatization, POS tagging, using the list of stopwords etc. More attention is paid to the structure of the sentiment analyzer which is based on some of the machine learning methods (support vector machines, Naive Bayes and maximum entropy classification). On the basis of the theoretical background, a functional analyzer is projected and implemented. The experiments are focused mainly on comparing the classification methods and on the benefits of using the individual preprocessing methods. The success rate of the constructed classifier reaches up to 84 % in the cross-validation.
237

Sdílená ekonomika v kontextu postmateriálních hodnot: případ segmentu ubytování v Praze / Sharing Economy in the Context of Postmaterial Values: The Case of Accommodation Segment in Prague

Svobodová, Tereza January 2020 (has links)
This master's thesis is about the success of sharing economy in the accommodation segment in Prague. The thesis is based on theories conceptualizing sharing economy as a result of social and value change, not only as technological one. Using online review data, the user experience of shared accommodation via Airbnb and traditional via Booking are compared. Analysis is conducted with focus on users' satisfied needs and fulfilled values. For processing the data, text mining techniques (topic modelling and sentiment analysis) were employed. The major result is that in Prague the models of sharing economy accommodation meets the growing need in society to fulfil post-material values in the market much better than the models of traditional accommodation (hotels, hostels, boarding houses). In their experiences, Airbnb users reflect social and emotional values more often, even though most sharing economy accommodations in Prague do not involve any physical sharing with the host. The thesis thus brings a unique perspective on the Airbnb phenomenon in the Czech context and contributes to the discussion of why the market share of the sharing economy in the accommodation segment in Prague has been growing, while traditional models stagnated.
238

The impact of sentiment and misinformation cycling through the social media platform, Twitter, during the initial phase of the COVID-19 vaccine rollout

Burwell, Emily Grace 01 June 2022 (has links)
No description available.
239

Exploring Hybrid Topic Based Sentiment Analysis as Author Identification Method on Swedish Documents

Jakob, Bremer January 2021 (has links)
The Swedish national bank has had shifting policies when it comes to publicity and confidentiality concerning publishing of texts within the bank. For some time, texts written by commissioners within the bank were decided to be published anonymously. Later they revoked the confidentiality policy, publishing all documents publicly again. This led to emerged interests in possible shifting attitudes toward topics discussed by the commissioners when writing anonymously versus publicly. On a request, based on the interests, there are ongoing analyses being conducted with the help of language technology where topics are extracted from the anonymous and public documents respectively. The aim is to find topics related to individual commissioners with the purpose of, as accurately as possible, identifying which of the anonymous documents is written by who. To discover unique relations between the commissioners and the generated topics, this thesis proposes hybrid topic based sentiment analysis as an author identification method to be able to use sentiments of topics as identifying features of commissioners. The results showed promise in the proposed approach. Though, further research is substantial, conducting comparisons with other acknowledged author identification methods, to confirm some level of efficacy, especially on documents containing close similarities among topics.
240

Attityd till ansiktsigenkänning : Vilken inställning har Twitter-användare till ansiktsigenkänning, och hur kan Twitter-data användas för att undersöka det? / Attitude toward facial recognition : What is the attitude of Twitter users toward facial recognition, and how can Twitter data be used to investigate it?

Perez, Edwin, Nordberg, Patric January 2021 (has links)
Artificiell intelligens (AI) har tagit världen med storm de senaste åren där nya implementationer och uppfinningar ständigt tas fram och implementeras. Ansiktsigenkänning är en teknik inom AI som kan användas för att identifiera bland annat kriminella eller terrorister genom övervakningskameror, identifiera underåriga drickare och motverka identifikationsstöld. Problemet med ansiktsigenkänningstekniker är att det finns en brist på kunskap om människors attityd till ansiktsigenkänning. Samtidigt som utvecklingen av AI går i en rasande fart och användandet av AI ständigt ökar i samhället, hänger inte de etiska reflektionerna på användningen av AI med i den snabba tekniska utvecklingen av AI. Etiska reflektioner handlar om egenskaper, syften och tilliten till AI. Det vill säga, används ansiktsigenkänning på ett sätt som är allmänt accepterat av de som utsätts för tekniken. Detta är ett intressant ämne eftersom samhällen och världen befinner sig i denna utveckling just nu.    Denna studie har som syfte att försöka fylla bristen på kunskap om människors attityd till ansiktsigenkänning genom att analysera människors inställning till det. Studien som genomförs består av Twitter-data som ligger till grund för en sentimentanalys. En sentimentanalys består av en kombination av en kvalitativ och kvantitativ analys. Studiens resultat visar att inställningen till ansiktsigenkänning beror på kontexten eller situationen den används i och till vilket syfte. Enligt den Twitter-data som hämtades för denna studie, verkar inställningen till ansiktsigenkänning skilja sig mellan olika länder. Resultatet av denna studie har även likheter med tidigare studier som undersökt inställning till ansiktsigenkänning.   Studien avser att göra ett metodbidrag genom att processen för datahämtning samt dataanalys dokumenteras. I resultatet görs en granskning av attitydklassificeringen där verktyget som används för att avgöra inställning jämförs med vad två verkliga personer anser att inställningen i ett visst tweet är. Det visade att det fanns en stor skillnad mellan hur människorna i testet och verktyget som används klassificerade sentiment. / Artificial intelligence (AI) has taken the world by storm in recent years where new implementations and inventions are constantly being developed and implemented. Facial recognition is a technology in AI that can be used to identify criminals or terrorists through surveillance cameras, identify underage drinkers and counteract identity theft. The problem with facial recognition techniques is that there is a lack of knowledge about how people react toward them. At the same time as the development of AI is accelerating and the use of AI is constantly increasing in society, the ethical reflections on the use of AI are not part of the rapid technological development of AI. Ethical reflections are about characteristics, purposes, and trust in AI. That means analyzing if facial recognition is used in a way that is widely accepted by those who are exposed to it. This is an interesting topic because societies and the world are currently in this development.   The aim of this study is to try and fill the gaps in the lack of knowledge about people's attitude toward facial recognition by analyzing people's attitudes toward it. The study that is carried out consists of Twitter data, which undergoes a sentiment analysis, which is a combination of a qualitative and quantitative analysis. The results of the study show that the attitude toward facial recognition depends on the context or situation it is used for and for what purpose. According to the Twitter data that was obtained for this study, the attitude toward facial recognition seems to differ between different countries. The results of this study also have similarities with previous studies that examined attitudes toward facial recognition.   The study intends to make a method contribution by documenting the process for data retrieval and data analysis. The result includes a review of the attitude classification where the tool used to determine attitude is compared to what two real people think the attitude in a particular tweet is. It turned out that there was a big difference between how the people in the test and the tool used for the analysis classified sentiments.

Page generated in 0.131 seconds