21 |
Model-Based Design, Development and Control of an Underwater Vehicle / Modellbaserad design, utveckling och reglering av ett undervattensfordonAili, Adam, Ekelund, Erik January 2016 (has links)
With the rising popularity of ROVs and other UV solutions, more robust and high performance controllers have become a necessity. A model of the ROV or UV can be a valuable tool during control synthesis. The main objective of this thesis was to use a model in design and development of controllers for an ROV. In this thesis, an ROV from Blue Robotics was used. The ROV was equipped with 6 thrusters placed such that the ROV was capable of moving in 6-DOFs. The ROV was further equipped with an IMU, two pressure sensors and a magnetometer. The ROV platform was further developed with EKF-based sensor fusion, a control system and manual control capabilities. To model the ROV, the framework of Fossen (2011) was used. The model was estimated using two different methods, the prediction-error method and an EKF-based method. Using the prediction-error method, it was found that the initial states of the quaternions had a large impact on the estimated parameters and the overall fit to validation data. A Kalman smoother was used to estimate the initial states. To circumvent the problems with the initial quaternions, an \abbrEKF was implemented to estimate the model parameters. The EKF estimator was less sensitive to deviations in the initial states and produced a better result than the prediction-error method. The resulting model was compared to validation data and described the angular velocities well with around 70 % fit. The estimated model was used to implement feedback linearisation which was used in conjunction with an attitude controller and an angular velocity controller. Furthermore, a depth controller was developed and tuned without the use of the model. Performance of the controllers was tested both in real tests and simulations. The angular velocity controller using feedback linearisation achieved good reference tracking. However, the attitude controller could not stabilise the system while using feedback linearisation. Both controllers' performance could be improved further by tuning the controllers' parameters during tests. The fact that the feedback linearisation made the ROV unstable, indicates that the attitude model is not good enough for use in feedback linearisation. To achieve stability, the magnitude of the parameters in the feedback linearisation were scaled down. The assumption that the ROV's center of rotation coincides with the placement of the ROV's center of gravity was presented as a possible source of error. In conclusion, good performance was achieved using the angular velocity controller. The ROV was easier to control with the angular velocity controller engaged compared to controlling it in open loop. More work is needed with the model to get acceptable performance from the attitude controller. Experiments to estimate the center of rotation and the center of gravity of the ROV may be helpful when further improving the model.
|
22 |
Měření a analýza dynamických vlastností rotujících částí strojů / Measurement and analysis of dynamic properties of rotating machine partsGofroň, Vojtěch January 2015 (has links)
Diploma thesis focuses on measurement and analysis of shaft motion, torque, angular velocity and vibration. First part of the thesis deals with general issue of acquiring a digital signal. Next part describes suitable sensors for each measurement type, and data acquisition hardware. The last theoretical part describes methods for measurement data analysis and vibration diagnostics. Practical part of the thesis describes shaft motion and torque measurements made on laboratory equipment, and vibration measurement made on real machine system. Each measurement includes measurement data analysis and evaluation.
|
23 |
Validation of a new iPhone application for measurements of wrist velocity during actual work tasks / Validering av en ny iphone-applikation för mätning av handledshastighet under verkliga arbetsuppgifterAbaid, Mohammed Abderhman January 2023 (has links)
The breakthrough in mobile technology and the development of smartphones, supplied with sensing devices such as Inertial Measurement Units (IMUs), has made it possible to obtain accurate and reliable data on the angular velocity for different objects. The available technical sensors for wrist movements, such as electrogoniometers, are costly, time-consuming, and need a particular computer program to be analyzed. Therefore, there is a need to develop user-friendly risk assessment methods for wrist angular velocity measurements. This master thesis aimed to validate the accuracy of a newly developed iPhone application (App), "ErgoHandMeter," for wrist velocity in actual work tasks, by comparing the “ErgoHandMeter” to standard electrogoniometers. The project study was performed with four participants, two females and two males, from three jobs performing actual work tasks. The total angular velocity obtained by the mobile application was compared with the angular velocity data from the standard electrogoniometer. The total angular velocities obtained from the smartphone and the goniometer were computed at the 10th, 50th and 90th percentile for the four subjects. The 50th percentile of goniometer-flexion velocity (G-flex) was 7.4 ± 5.4°/s, for the goniometer-total (G-tot) 8.7 ± 6.5)°/s and for App 7.2 ± 4.9°/s. The correlation coefficient for the 50th percentile of goniometer-flexion (G-flex) parameter and smartphone application was 0.994. For the goniometer-total (G-tot) and the application, it was 0.993. In a Bland-Altman plot the mean difference between G-flex and App for the 50th percentile was -0.18 °/s and for G-tot and App was -1.54 °/s, i.e. the App was lower in average. The limit of the agreement between G-Flex and App, and G-tot and App stayed within two standard deviations. For G-Flex and App (mean+1.96SD) was 1.34 °/s, (mean-1.96SD) was -1.71 °/s, while for G-tot and App (mean+1.96SD) was 1.89 °/s, (mean-1.96SD) was -4.96 °/s, indicating an adequate agreement between the two methods. A limitation was that the included occupations were all relatively low velocity. However, in conclusion, the results indicate that the two methods agree adequately and can be used interchangeably. / Genombrottet inom mobiltekniken och utvecklingen av smarttelefoner med sensorer som t.ex. tröghetsmätningsenheter (IMU) har gjort det möjligt att få exakta och tillförlitliga uppgifter om vinkelhastigheten för olika objekt. De tillgängliga tekniska sensorerna för handledsrörelser, t.ex. elektrogoniometrar, är dyra, tidskrävande och de samplade signalerna kräver ett särskilt datorprogram för att analyseras. Det finns därför ett behov av att utveckla användarvänliga riskbedömningsmetoder för mätningar av handledens vinkelhastighet. Syftet med detta examensarbete var att validera noggrannheten hos en nyutvecklad iPhone-applikation (App), "ErgoHandMeter", för handledshastighet i verkliga arbetsuppgifter, genom att jämföra "ErgoHandMeter" med vanliga elektrogoniometrar. Projektstudien genomfördes med fyra deltagare, två kvinnor och två män, från tre yrken som utförde verkliga arbetsuppgifter. Den totala vinkelhastigheten som erhölls av mobilapplikationen jämfördes med vinkelhastighetsdata från standardelektrogoniometern. De totala vinkelhastigheterna som erhållits från smarttelefonen och goniometern beräknades vid den 10:e, 50:e och 90:e percentilen för de fyra försökspersonerna. Den 50:e percentilen för goniometer-flexionshastigheten (G-flex) var i genomsnitt 7,4°/s och för goniometertotalen (G-tot) 8,7°/s. Korrelationskoefficienten (r) för den 50:e percentilen för goniometer-flexionsparametern (G-flex) och smartphone-applikationen var 0,994. För goniometer-total (G-tot) och applikationen var r 0,993. I en Bland-Altman-plot var den genomsnittliga skillnaden mellan G-flex och appen för den 50:e percentilen -0,18°/s och för G-tot och appen -1,54°/s (App var lägre än Gon). Medelvärdet för differensen mellan G-Flex och App och G-tot och App ligger inom två standardavvikelser. För G-Flex och App (medelvärde+1,96SD) var 1,34 °/s, (medelvärde-1,96SD) var -1,71 °/s, medan för G-tot och App (medelvärde+1,96SD) var 1,89 °/s, (medelvärde-1,96SD) var -4,96 °/s. Vilket tyder på en tillräcklig överensstämmelse mellan de två metoderna. En begränsning var att de inkluderade yrkena alla hade relativt låg hastighet. Sammanfattningsvis visar dock resultaten att de två metoderna stämmer väl överens och kan användas på ett utbytbart sätt.
|
24 |
Utvärdering av IMU-sensorers precision vid mätning av handledens vinkelhastigheter : Jämförande studie med ett optiskt spårningssystem / Evaluation of the Precision of IMU-sensors Measuring Wrist Angular Velocity : Comparative study with Optical Motion TrackingWingqvist, Jenny, Lantz, Josephine January 2019 (has links)
Belastningsskador hos arbetare är ett ökande problem hos olika företag och det har visat sig finnas en tydlig koppling mellan dessa skador och handledens vinkelhastigheten. Det är därför av stort intresse att kunna mäta dessa vinkelhastigheter på ett noggrant och smidigt sätt. Syftet med denna rapport är att utvärdera precisionen av IMU-sensorers förmåga att beräkna vinkelhastigheten av handleden. Detta görs genom att jämföra data från IMU-sensorer med data från ett optiskt spårningssystem (OTS), vilket klassas som en gold standard inom detta område. Ett experiment bestående av åtta övningar utfördes: tre standard rörelser (flexion och rotation i takterna 40, 90 och 140 slag per minut) och fyra simulerade arbeten (målning, pappersvikning, datorarbete och hårföning). Grad av överensstämmelse ges av 1,96 standardavvikelser (SD) för standardrörelserna (10 deltagare) vilka var -31,8 grader/s och 34,2 grader/s, medan för de simulerade arbetena var det -35,1 grader/s och 34,2 grader/s. Det lägsta medelvärdet av medelkvadratavvikelse (RMSD) var 15,7 grader/s och erhölls vid 40 BPM medan den högsta medelvärdet var 93,9 grader/s och erhölls vid målningsövningen. Medelvärdet av korrelationskoefficienten mellan IMU-sensorer och OTS varierade mellan 0,97 och 0,42 och korrelationskoefficienterna av deltagarnas 50:e percentiler av vinkelhastigheten var 0,95 för standardrörelserna och 0,96 för de simulerade arbetena. Medelvärdet av absoluta differensen mellan sensorer och OTS var givet i percentiler (10:e, 50:e och 90:e). Det största spannet för 50:e percentilen gavs vid 140 BPM (18,3 ± 24,6) och det minsta spannet vid 40 BPM (3,5 ± 4,7). Trots att det fanns mindre differenser mellan metodernas mätningar av vinkelhastighet, anser vi att IMU-sensorer har potential att användas för att mäta vinkelhastigheter hos handledens och med vidare utveckling kan den nuvarande differensen minimeras. / Musculoskeletal disorders (MSDs) are increasingly frequent amongst workers and there is a clear connection between work injuries and wrist angular velocities. One of the biggest issues therefore is the currently limited availability of means to measure these angular velocities. The aim of this study is to validate the usability of the IMU sensors to measure angular velocities. This is done by comparing the data from the IMU:s with the data obtained with the optical motion tracking system (OTS), which is considered gold standard within this field of studies. An experiment consisting of eight exercises was conducted: three standard movements (flexion and rotation in the pace 40, 90 and 140 repetitions per minute) and four simulated practical work tasks (painting, folding paper, computer exercise and using a hairdryer). The limits of agreement for the standard movements (10 subjects) were -31,8 degrees/s and 34,2 degrees/s, whereas for the simulated practical work tasks they were -35,1 degrees/s and 28,2 degrees/s. The lowest mean value of the root mean square deviation (RMSD) value was 15,7 degrees/s which represents the 40 BPM task whilst the highest mean value was 93,9 degrees/s which correspond to the painting task. The mean value of the correlation coefficients between the IMU:s and the OTS ranged between 0,97 and 0,42 and the correlation coefficient between the subjects 50:th percentiles of the angular velocity, was 0,95 for the standard movements whilst for the practical work tasks it was 0,96. The mean value of the absolute difference between the sensors and the OTS was given in percentiles (10th, 50th and 90th). The largest range within the 50th percentile occurred during the 140 BPM task (18,3 ± 24,6) and the smallest range during the 40 BPM task (3,5 ± 4,7). Although the measured angular velocities vary to a certain extent between the two methods, we conclude that the IMU sensors present the potential to work as measuring units for wrist angular velocities and with further development the current differences can be minimized. / Forte dnr: 2017-01209 "Enkel och tideffektiv metod att mät, analysera och presentera biomekaniskbelastning för hand-handled"
|
25 |
Soft Surface Roll Mechanics Parameters for Light Vehicle Rollover Accident ReconstructionHenry, Kevin Claude 18 July 2007 (has links) (PDF)
Light vehicle rollover accidents on soft surfaces can be modeled assuming constant drag with linear motion equations and other engineering principles. The concept of using segment average results to evaluate roll mechanics parameters throughout a roll sequence, and specifically, segment duration to evaluate vehicle trajectory between ground impacts is developed. The trajectory model is presented, explained and compared to values obtained by analyzing digital video of rollover crash tests. Detailed film analysis procedures are developed to obtain data from rollover crash tests that are not otherwise documented. Elevation of the center of gravity of vehicles is obtained where instrumentation does not explicitly yield this data. Instantaneous center of gravity elevation data throughout a roll sequence provides the opportunity to calculate descend distances as a vehicle travels from one ground contact to another. This data is used to quantify severity of ground impacts as a vehicle interact with the ground throughout a roll sequence. Segment average analysis is a reasonable method for determining general roll mechanics parameters. Because of the chaotic nature of rollover accidents, the range of effective drag factors for a given roll surface may be quite large. Choosing an average of typical drag factors is a reasonable approach for a first-order approximation although certain parameters may be predicted less accurately than if actual values were known. The trajectory results demonstrate the influence of drag factor descent height calculations. Typical constant drag factors tend to overestimate descent height early in a roll sequence and underestimate descent height later in the sequence. The trajectory model is a useful tool to aid in understanding rollover mechanics although a rolling vehicle may be in contact with the ground for a significant fraction of a roll segment. The model should not be used at locations in roll sequences where there are extremes in translational center of gravity decelerations. These extremes include the segments immediately following overturn where there are large angular accelerations and large differences between the tangential velocity of the vehicle perimeter and the translational velocity of the center of gravity, as well as segments that include vehicle impacts with irregular topography.
|
26 |
COMPARISON OF WRIST VELOCITY MEASUREMENT METHODS: IMU, GONIOMETER AND OPTICAL MOTION CAPTURE SYSTEM / JÄMFÖRELSE AV HANDLEDSMÄTNING METODER: IMU, GONIOMETER OCH OPTISKT RÖRELSEFÅNGNINGSSYSTEMManivasagam, Karnica January 2020 (has links)
Repetitive tasks, awkward hand/wrist postures and forceful exertions are known risk factors for work-related musculoskeletal disorders (WMSDs) of the hand and wrist. WMSD is a major cause of long work absence, productivity loss, loss in wages and individual suffering. Currently available assessment methods of the hand/wrist motion have the limitations of being inaccurate, e.g. when using self-reports or observations, or expensive and resource-demanding for following analyses, e.g. when using the electrogoniometers. Therefore, there is a need for a risk assessment method that is easy-to-use and can be applied by both researchers and practitioners for measuring wrist angular velocity during an 8-hour working day. Wearable Inertial Measurement Units (IMU) in combination with mobile phone applications provide the possibility for such a method. In order to apply the IMU in the field for assessing the wrist velocity of different work tasks, the accuracy of the method need to be examined. Therefore, this laboratory experiment was conducted to compare a new IMU-based method with the traditional goniometer and standard optical motion capture system. The laboratory experiment was performed on twelve participants. Three standard hand movements, including hand/wrist motion of Flexion-extension (FE), Deviation, and Pronationsupination (PS) at 30, 60, 90 beat-per-minute (bpm), and three simulated work tasks were performed. The angular velocity of the three methods at 50th and 90th percentile were calculated and compared. The mean absolute error and correlation coefficient were analysed for comparing the methods. Increase in error was observed with increase in speed/bpm during the standard hand movements. For standard hand movements, comparison between IMUbyaxis and Goniometer had the smallest difference and highest correlation coefficient. For simulated work tasks, the difference between goniometer and optical system was the smallest. However, for simulated work tasks, the differences between the compared methods were in general much larger than the standard hand movements. The IMU-based method is seen to have potential when compared with the traditional measurement methods. Still, it needs further improvement to be used for risk assessment in the field. / Upprepade uppgifter, besvärliga hand- / handledsställningar och kraftfulla ansträngningar är kända riskfaktorer för arbetsrelaterade muskuloskeletala störningar (WMSD) i hand och handled. WMSD är en viktig orsak till lång frånvaro, produktivitetsförlust, löneförlust och individuellt lidande. För närvarande tillgängliga bedömningsmetoder för hand / handledsrörelser har begränsningarna att vara felaktiga, t.ex. när du använder självrapporter eller observationer, eller dyra och resurskrävande för följande analyser, t.ex. när du använder elektrogoniometrarna. Därför finns det ett behov av en riskbedömningsmetod som är enkel att använda och som kan användas av både forskare och utövare för att mäta handledens vinkelhastighet under en 8-timmars arbetsdag. Wearable Inertial Measuring Units (IMU) i kombination med mobiltelefonapplikationer ger möjlighet till en sådan metod. För att kunna använda IMU i fältet för att bedöma handledens hastighet för olika arbetsuppgifter måste metodens noggrannhet undersökas. Därför genomfördes detta laboratorieexperiment för att jämföra en ny IMU-baserad metod med den traditionella goniometern och det vanliga optiska rörelsefångningssystemet. Laboratorieexperimentet utfördes på tolv deltagare. Tre standardhandrörelser, inklusive hand / handledsrörelse av Flexion-extension (FE), Deviation och Pronation-supination (PS) vid 30, 60, 90 beat-per-minut (bpm) och tre simulerade arbetsuppgifter utfördes. Vinkelhastigheten för de tre metoderna vid 50: e och 90: e percentilen beräknades och jämfördes. Det genomsnittliga absoluta felet och korrelationskoefficienten analyserades för att jämföra metoderna. Ökning av fel observerades med ökning av hastighet/bpm under standardhandrörelserna. För standardhandrörelser hade jämförelsen mellan IMUbyaxis och Goniometer den minsta skillnaden och högsta korrelationskoefficienten. För simulerade arbetsuppgifter var skillnaden mellan goniometer och optiskt system den minsta. För simulerade arbetsuppgifter var dock skillnaderna mellan de jämförda metoderna i allmänhet mycket större än de vanliga handrörelserna. Den IMUbaserade metoden anses ha potential jämfört med traditionella mätmetoder. Ändå behöver det förbättras för att kunna användas för riskbedömning på fältet.
|
Page generated in 0.0511 seconds