• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Higher-order airy functions of the first kind and spectral properties of the massless relativistic quartic anharmonic oscillator

Durugo, Samuel O. January 2014 (has links)
This thesis consists of two parts. In the first part, we study a class of special functions Aik (y), k = 2, 4, 6, ··· generalising the classical Airy function Ai(y) to higher orders and in the second part, we apply expressions and properties of Ai4(y) to spectral problem of a specific operator. The first part is however motivated by latter part. We establish regularity properties of Aik (y) and particularly show that Aik (y) is smooth, bounded, and extends to the complex plane as an entire function, and obtain pointwise bounds on Aik (y) for all k. Some analytic properties of Aik (y) are also derived allowing one to express Aik (y) as a finite sum of certain generalised hypergeometric functions. We further obtain full asymptotic expansions of Aik (y) and their first derivative Ai'(y) both for y > 0 and for y < 0. Using these expansions, we derive expressions for the negative real zeroes of Aik (y) and Ai'(y). Using expressions and properties of Ai4(y), we extensively study spectral properties of a non-local operator H whose physical interpretation is the massless relativistic quartic anharmonic oscillator in one dimension. Various spectral results for H are derived including estimates of eigenvalues, spectral gaps and trace formula, and a Weyl-type asymptotic relation. We study asymptotic behaviour, analyticity, and uniform boundedness properties of the eigenfunctions Ψn(x) of H. The Fourier transforms of these eigenfunctions are expressed in two terms, one involving Ai4(y) and another term derived from Ai4(y) denoted by Āi4(y). By investigating the small effect generated by Āi4(y) this work shows that eigenvalues λn of H are exponentially close, with increasing n Ε N, to the negative real zeroes of Ai4(y) and those of its first derivative Ai'4(y) arranged in alternating and increasing order of magnitude. The eigenfunctions Ψ(x) are also shown to be exponentially well-approximated by the inverse Fourier transform of Ai4(|y| - λn) in its normalised form.
2

Applications of the coupled cluster method to pairing problems

Snape, Christopher January 2010 (has links)
The phenomenon of pairing in atomic and nuclear many-body systems gives rise to a great number of different physical properties of matter, from areas as seemingly diverse as the shape of stable nuclei to superconductivity in metals and superfluidity in neutron stars. With the experimental realisation of the long sought BCS-BEC crossover observed in trapped atomic gases - where it is possible to fine tune the s-wave scattering length a of a many-fermion system between a dilute, correlated BCS-like superfluid of Cooper pairs and a densely packed BEC of composite bosons - pairing problems in atomic physics have found renewed interest in recent years. Given the high precision techniques involved in producing these trapped gas condensates, we would like to employ a suitably accurate many-body method to study such systems, preferably one which goes beyond the simple mean-field picture.The Coupled Cluster Method (CCM) is a widely applied and highly successful ab initio method in the realm of quantum many-body physics and quantum chemistry, known to be capable of producing extremely accurate results for a wide variety of different many-body systems. It has not found many applications in pairing problems however, at least not in a general sense. Our aim, therefore, is to study various models of pairing using a variety of CCM techniques - we are interested in studying the generic features of pairing problems and in particular, we are especially interested in probing the collective modes of a system which exhibits the BCS-BEC crossover, in either the BCS or BEC limit. The CCM seems a rather good candidate for the job, given the high precision results it can produce.
3

Chiral description and physical limit of pseudoscalar decay constants with four dynamical quarks and applicability of quasi-Monte Carlo for lattice systems

Ammon, Andreas 10 June 2015 (has links)
In dieser Arbeit werden Massen und Zerfallskonstanten von pseudoskalaren Mesonen, insbes. dem Pion und dem D-s-Meson, im Rahmen der Quantenchromodynamik (QCD) berechnet. Diese Größen wurden im Rahmen der Gitter-QCD, einer gitter-regularisierten Form der QCD, mit vier dynamischen Twisted-Mass Fermionen (Up-, Down-, Strange- und Charm-Quark) berechnet. Dieses Setup bieten den Vorteil der automatischen O(a)-Verbesserung. Der Gitterabstand a wurde mit Hilfe der Pion-Masse und -Zerfallskonstante durch Extrapolation zum physikalischen Punkt, geg. durch das physikal. Verhältnis von f_pi/M_pi, bestimmt. Dabei kamen Formeln aus der chiralen Störungstheorie, die die speziellen Diskretisierungseffekte des Twisted-Mass-Formalismus berücksichtigen, zum Einsatz. Die bestimmten Werte des Gitterabstands, a=0.0899(13) fm (@ beta=1.9), a=0.0812(11) fm (@ beta=1.95) und a = 0.0624(7) fm (@beta=2.1) liegen etwa fünf Prozent über denen vorheriger Bestimmungen (Baron et. al. 2010). Dies erklärt sich vor allem durch eine Untersuchung bezüglich der Anwendbarkeit des Bereiches der Up-/Down-Quark-Massen auf die verwendeten Extrapolationsformeln. Zur Untersuchung des physikalischen Grenzwertes von f_{D_s} werden Formeln der chiralen Störungstheorie für schwere Mesonen (HM-ChiPT) eingesetzt. Das Endergebnis dieser Betrachtung f_{D_s} = 248.9(5.3) MeV liegt etwas über vorherigen Bestimmungen (ETMC 2009, arXiv:0904.095. HPQCD 2010, arXiv:1008.4018) und etwa zwei Standardabweichungen unter dem Mittel aus experimentellen Werten (PDG 2012). Ein weiterer Teil dieser Arbeit behandelt die i.A. schwierige Berechnung von unverbundenen Beiträgen, die z.B. bei der Berechnung der Masse des neutralen Pions eine Rolle spielen. In dieser Arbeit wird eine neue Methode zur Approximation solcher Beiträge vorgestellt, welche auf der sog. Quasi-Monte-Carlo-Methode (QMC-Methode) beruht. Diese Methode birgt große Möglichkeiten zu enormen Einsparungen der Rechenzeit. / This work deals with the determination of decay constants and masses of the pion and D-s meson. This happens in the framework of lattice QCD, a lattice regularised form of QCD. The four dynamical fermions (up, down, strange and charm quark) are described by the twisted-mass approach (TM-QCD) featuring automatic O(a) improvement. The lattice spacing a has been determined using the pion mass and decay constant extrapolated to the physical point, which is determined by the physical ratio f_pi/m_pi. In order to obtain an accurate description, new formulae from Chi-PT, taking into account the special form of discretisation effects of TM-QCD have been employed. The determined results of a = 0.0899(13) fm (@ beta=1.9), a = 0.0812(11)fm (@ beta=1.95) and a = 0.0624(7) fm (@ beta=2.1) are approximately 5% larger than previous determinations (Baron et. al. 2010). This shift is most likely explained by the reduced range of pion masses (

Page generated in 0.0859 seconds