• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 8
  • 8
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prototyping for the central detector and CP-violation studies with the CMS experiment

Vite, Davide Francesco January 1996 (has links)
No description available.
2

Analysis of Neutral D Meson Two-Body Decays to a Neutral Kaon and a Neutral Pion

Kimmel Jr, Taylor Douglas 15 September 2021 (has links)
Decays of neutral D mesons to final states containing K + π's could provide evidence for CP-violation from a source not accounted for in the Standard Model. Due to the interference between Cabibbo-favored and Cabibbo-suppressed transitions, a decay rate asymmetry of D0 → K0S π0 compared to D0 → K0Lπ0 has been predicted to be non-zero. If New Physics interferes in doubly Cabibbo-suppressed D decays, the measurement of this asymmetry would differ from the predicted value and may provide evidence for CP-violation beyond the CKM mechanism. I present an analysis method to measure this branching fraction asymmetry, R(D0) ≡ B(D0→K0S π0)−B(D0→K0L π0)/(B(D0→K0Sπ0)+B(D0→K0Lπ0)), utilizing e+e− → cc events in the Belle dataset. / Doctor of Philosophy / The Universe appears to be made almost entirely of matter rather than antimatter; however, matter and antimatter should have been created in equal amounts in the Big Bang. We do not know exactly why we observe so much more matter as compared to antimatter. The Standard Model (SM) of particle physics accounts for some of the asymmetry through Charge-Parity (CP) symmetry violation, which explains how particles behave differently than their corresponding antiparticles. In the current state of the SM, some CP-violation is allowed in decays via the weak force, but the theory does not account for enough CP violation to explain the amount of matter-antimatter asymmetry observed in the Universe. Decays of a D meson to a kaon (K meson) plus one or more pions (π mesons) via a new mechanism beyond the weak force could provide evidence of a new source of CP-violation. In this analysis, I present a method for analyzing the decays of neutral D mesons to a neutral kaon and a neutral pion in the Belle dataset to test the SM.
3

Searching for Clean Observables in $B -> D* /tau- \bar{\nu}_{\tau}$ Decays

Williams, Michael D, Jr. 01 January 2019 (has links)
In this thesis, the clean angular observables in the $\bar{B} \to D^{*+} \ell^- \bar{\nu}_{\ell}$ angular distribution is studied. Similar angular observables are widely studied in $B \to K^* \mu^+ \mu^-$ decays. We believed that these angular observables may have different sensitivities to different new physics structures.
4

On a Hydrogen Pellet Target for Antiproton Physics with PANDA

Nordhage, Örjan January 2006 (has links)
<p>The PANDA experiment is a part of the future FAIR accelerator facility and will study the strong interaction by detecting the reaction products from antiproton-proton annihilations in a near full solid-angle configuration. One option for the internal proton target in PANDA is frozen micro-spheres of hydrogen, so-called pellets.</p><p>Such a pellet target is interesting because of the unique characteristics it offers; the high target thickness, the small interaction volume, the minimal gas load on the vacuum system, and the possibility of tracking individual pellets. Nevertheless, it is possible to allocate the bulky equipment needed to produce the pellets at a few meters away from the beam. This way particle detectors can be located close and almost fully around the interaction point.</p><p>This thesis is devoted to the optimization of a pellet target. To perform measurements, a Pellet-Test Station was built at The Svedberg Laboratory, Uppsala. For the first time, experimental results show the pellet distribution in space and time, and in addition, the vacuum along the pellet pipes. Furthermore, dedicated measurements carried out at CELSIUS/WASA demonstrate the existence of pellet heating as a result of beam-target interactions.</p><p>In performing calculations, the potential problems with pellet heating at PANDA are outlined. Moreover, to look at the consequences for the desired physics, a reaction involving short-lived D-mesons has been used to show the advantages of pellets compared to a more spacious target.</p><p>In conclusion, these studies lead to a deeper understanding of the pellet properties, which makes it possible to suggest future improvements, such as cooling with no vibrations.</p>
5

On a Hydrogen Pellet Target for Antiproton Physics with PANDA

Nordhage, Örjan January 2006 (has links)
The PANDA experiment is a part of the future FAIR accelerator facility and will study the strong interaction by detecting the reaction products from antiproton-proton annihilations in a near full solid-angle configuration. One option for the internal proton target in PANDA is frozen micro-spheres of hydrogen, so-called pellets. Such a pellet target is interesting because of the unique characteristics it offers; the high target thickness, the small interaction volume, the minimal gas load on the vacuum system, and the possibility of tracking individual pellets. Nevertheless, it is possible to allocate the bulky equipment needed to produce the pellets at a few meters away from the beam. This way particle detectors can be located close and almost fully around the interaction point. This thesis is devoted to the optimization of a pellet target. To perform measurements, a Pellet-Test Station was built at The Svedberg Laboratory, Uppsala. For the first time, experimental results show the pellet distribution in space and time, and in addition, the vacuum along the pellet pipes. Furthermore, dedicated measurements carried out at CELSIUS/WASA demonstrate the existence of pellet heating as a result of beam-target interactions. In performing calculations, the potential problems with pellet heating at PANDA are outlined. Moreover, to look at the consequences for the desired physics, a reaction involving short-lived D-mesons has been used to show the advantages of pellets compared to a more spacious target. In conclusion, these studies lead to a deeper understanding of the pellet properties, which makes it possible to suggest future improvements, such as cooling with no vibrations.
6

Scalar Meson Effects In Radiative Decays Of Vector Mesons

Kerman Solmaz, Saime 01 November 2003 (has links) (PDF)
The role of scalar mesons in radiative vector meson decays is investigated. The effects of scalar-isoscalar f_{0}(980) and scalar-isovector a_{0}(980) mesons are studied in the mechanism of the radiative Phi-&gt / pi{+}pi{-}gamma and phi-&gt / pi{0}eta gamma decays, respectively. A phenomenological approach is used to study the radiative phi-&gt / pi{+}p{-}gamma decay by considering the contributions of sigma-meson, rho-meson and f_{0}-meson. The interference effects between different contributions are analyzed and the branching ratio for this decay is calculated. The radiative phi-&gt / pi{0}eta gamma decay is studied within the framework of a phenomenological approach in which the contributions of rho-meson, chiral loop and a_{0}-meson are considered. The interference effects between different contributions are examined and the coupling constants g_{phi a_{0} gamma} and g_{a_{0}K{+}K{-}} are estimated using the experimental branching ratio for the phi-&gt / pi{0}eta gamma decay. Furthermore, the radiative rho{0}pi{+}pi{-}gamma$ and rho{0}-&gt / pi{0}pi{0}gamma decays are studied to investigate the role of scalar-isoscalar sigma-meson. The branching ratios of the rho{0}-&gt / pi{+}pi{-}gamma and rho{0}-&gt / pi{0}pi{0}gamma decays are calculated using a phenomenological approach by adding to the amplitude calculated within the framework of chiral perturbation theory and vector meson dominance the amplitude of sigma-meson intermediate state. In all the decays studied the scalar meson intermediate states make important contributions to the overall amplitude.
7

Applications of the Wavelet Transform to B Mixing Analysis

Cadien, Adam Samuel 06 1900 (has links)
Abstract The neutral B mesons B0 and B0s can under go flavor changing oscillations due to interactions by the weak force. Experiments which measure the frequency of these state transitions produce extremely noisy results that are difficult to analyse. A method for extracting the frequency of B mesons oscillations using the continuous wavelet transform is developed here. In this paper the physics of B meson mixing is related, leading to the derivation of a function describing the expected amount of mixing present in B0 and B0s meson decays. This result is then used to develop a new method for analysing the underlying frequency of oscillation in B mixing. An introduction to wavelet theory is provided in addition to details on interpreting daughter wavelet coefficient diagrams. Finally, the effectiveness of the analysis technique produced, referred to as the Template Fitting Method, is investigated through an application to data generated using Monte Carlo methods.
8

Chiral description and physical limit of pseudoscalar decay constants with four dynamical quarks and applicability of quasi-Monte Carlo for lattice systems

Ammon, Andreas 10 June 2015 (has links)
In dieser Arbeit werden Massen und Zerfallskonstanten von pseudoskalaren Mesonen, insbes. dem Pion und dem D-s-Meson, im Rahmen der Quantenchromodynamik (QCD) berechnet. Diese Größen wurden im Rahmen der Gitter-QCD, einer gitter-regularisierten Form der QCD, mit vier dynamischen Twisted-Mass Fermionen (Up-, Down-, Strange- und Charm-Quark) berechnet. Dieses Setup bieten den Vorteil der automatischen O(a)-Verbesserung. Der Gitterabstand a wurde mit Hilfe der Pion-Masse und -Zerfallskonstante durch Extrapolation zum physikalischen Punkt, geg. durch das physikal. Verhältnis von f_pi/M_pi, bestimmt. Dabei kamen Formeln aus der chiralen Störungstheorie, die die speziellen Diskretisierungseffekte des Twisted-Mass-Formalismus berücksichtigen, zum Einsatz. Die bestimmten Werte des Gitterabstands, a=0.0899(13) fm (@ beta=1.9), a=0.0812(11) fm (@ beta=1.95) und a = 0.0624(7) fm (@beta=2.1) liegen etwa fünf Prozent über denen vorheriger Bestimmungen (Baron et. al. 2010). Dies erklärt sich vor allem durch eine Untersuchung bezüglich der Anwendbarkeit des Bereiches der Up-/Down-Quark-Massen auf die verwendeten Extrapolationsformeln. Zur Untersuchung des physikalischen Grenzwertes von f_{D_s} werden Formeln der chiralen Störungstheorie für schwere Mesonen (HM-ChiPT) eingesetzt. Das Endergebnis dieser Betrachtung f_{D_s} = 248.9(5.3) MeV liegt etwas über vorherigen Bestimmungen (ETMC 2009, arXiv:0904.095. HPQCD 2010, arXiv:1008.4018) und etwa zwei Standardabweichungen unter dem Mittel aus experimentellen Werten (PDG 2012). Ein weiterer Teil dieser Arbeit behandelt die i.A. schwierige Berechnung von unverbundenen Beiträgen, die z.B. bei der Berechnung der Masse des neutralen Pions eine Rolle spielen. In dieser Arbeit wird eine neue Methode zur Approximation solcher Beiträge vorgestellt, welche auf der sog. Quasi-Monte-Carlo-Methode (QMC-Methode) beruht. Diese Methode birgt große Möglichkeiten zu enormen Einsparungen der Rechenzeit. / This work deals with the determination of decay constants and masses of the pion and D-s meson. This happens in the framework of lattice QCD, a lattice regularised form of QCD. The four dynamical fermions (up, down, strange and charm quark) are described by the twisted-mass approach (TM-QCD) featuring automatic O(a) improvement. The lattice spacing a has been determined using the pion mass and decay constant extrapolated to the physical point, which is determined by the physical ratio f_pi/m_pi. In order to obtain an accurate description, new formulae from Chi-PT, taking into account the special form of discretisation effects of TM-QCD have been employed. The determined results of a = 0.0899(13) fm (@ beta=1.9), a = 0.0812(11)fm (@ beta=1.95) and a = 0.0624(7) fm (@ beta=2.1) are approximately 5% larger than previous determinations (Baron et. al. 2010). This shift is most likely explained by the reduced range of pion masses (

Page generated in 0.0871 seconds