• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 14
  • 5
  • Tagged with
  • 60
  • 49
  • 32
  • 32
  • 25
  • 22
  • 20
  • 19
  • 19
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle de la présentation antigénique par les cellules endothéliales de la barrière hémato-encéphalique dans les pathologies inflammatoires affectant le système nerveux central / Role of antigen presentation by endothelial cells of the blood-brain barrier in inflammatory diseases affecting the central nervous system

Meyer, Céline 02 July 2018 (has links)
Les cellules endothéliales (CE) de la barrière hémato-encéphalique (BHE) ont une position cruciale à l'interface entre le système nerveux central (SNC) et les cellules circulantes du système immunitaire. Les lymphocytes T (LT) CD8 et CD4 sont des acteurs clés de la réponse immunitaire adaptative impliqués dans la physiopathologie de maladies inflammatoires du système nerveux central (SNC). Au cours de leur transmigration vers le SNC les LT interagissent avec les CE de la BHE. Ces cellules expriment des molécules de CMH de classe I et pourraient présenter des antigènes aux LTCD8, affectant ainsi leur comportement. L'objectif de mon projet de Thèse est de déterminer le rôle de la présentation antigénique par les CE de la BHE dans les maladies inflammatoires du SNC. Nous avons développé un modèle murin transgénique permettant l'expression conditionnelle par les CE de la BHE d'un antigène, l'hémagglutinine du virus Influenza (HA), permettant d'analyser in vitro et in vivo les interactions entre des LT spécifiques d'HA et les CE exprimant ou non l'antigène HA. La première partie du travail a consisté à déterminer si des LTCD8 activés spécifiques d'HA transférés dans les souris receveuses pouvaient être responsables d'une maladie inflammatoire du SNC liée à l'expression par la BHE de l'antigène cible. Les souris receveuses dont les CE de la BHE expriment HA, mais pas celles dont les CE n'expriment pas HA, développent après transfert un phénotype clinique causé par une apoptose des CE induite par des LTCD8 cytotoxiques et associé à des dommages tissulaires de la BHE et du SNC, témoignant que l'expression d'un antigène par la BHE peut induire une réponse immunitaire délétère affectant le SNC. La constatation chez ces souris d'une atteinte rétinienne et de l'oreille interne associée à la pathologie endothéliale de la BHE a permis de faire le rapprochement avec le syndrome de Susac, pathologie humaine orpheline liée à une atteinte endothéliale des vaisseaux du SNC, de la rétine et de l'oreille interne. La collaboration avec une équipe allemande a permis une analyse comparative entre notre modèle murin et des données immunologiques et anatomopathologiques issues de patients atteints d'un syndrome de Susac soulignant le rôle des LTCD8 cytotoxiques comme acteurs clefs des dommages endothéliaux observés dans le Susac, et sa probable nature auto-immune. Le bénéfice dans notre modèle de l'utilisation d'anticorps monoclonaux ciblant l'intégrine a4 permet de proposer dans le syndrome de Susac des perspectives thérapeutiques innovantes. La deuxième partie de ce travail était de déterminer si les CE de la BHE pouvaient se comporter comme des cellules présentatrices d'antigènes vis à vis des LT. Le transfert de LT CD8 spécifiques d'HA naïfs était associé, uniquement dans les souris receveuses dont les CE de la BHE exprimaient HA, à une prolifération des LTCD8 au niveau des organes lymphoïdes. / Endothelial cells (EC) of the blood brain barrier (BBB) have a crucial position at the interface between the central nervous system (CNS) and circulating cells of the immune system. CD8 and CD4 T cells are key actors of the adaptive immune response involved in pathophysiology of CNS inflammatory diseases. T cells interact with EC of the BBB during the transmigration course to the CNS. EC express MHC class I and can present antigens to CD8 T cells, affecting their behavior. In this context, our study aimed to determine the role of antigen presentation by EC of the BBB in CNS inflammatory diseases. We have developed a transgenic mouse model allowing conditional expression of a neo-antigen, Hemagglutinin of Influenza virus (HA) by EC of the BBB, allowing in vitro and in vivo analysis of the interactions between HA- specific T cells and EC expressing or not the HA antigen. In the first part of the work, we asked whether activated HA-specific CD8 T cells transferred in recipient mice could be responsible of CNS inflammatory disease linked to the expression of target antigen by the BBB. Recipient mice, which EC express HA, but not the control mice, which do not express HA, displayed apoptosis of EC and associated BBB and CNS tissue damages, resulting in development of clinical phenotype, showing that the expression of an antigen by the BBB can induce a deleterious immune response affecting the CNS. The finding in these mice of retinal and inner ear damages associated with BBB endothelial pathology enabled us to compare with Susac syndrome, an orphan human pathology associated with endothelial damages on CNS microvessels, branch retinal artery occlusions, and sensorineural hearing loss. The collaboration with a German team allowed a comparative analysis between our model and immunological and pathological data from patients with Susac Syndrome, highlighting the role of cytotoxic CD8 T cells as key players in endothelial damages observed in Susac syndrome, and the probable autoimmune nature of this pathology. The benefit in our model of the use of monoclonal antibody targeting a4 integrin allowed us to propose an innovative therapeutic perspective in Susac syndrome. The second part of the work was to determine if EC of BBB could behave as antigen presenting cells (APC) to T cells. Transfer of naïve HA-specific CD8 T cells was associated, only in recipient mice whose BBB EC expressed HA, to a proliferation of CD8 T cells in lymphoid organs. This observation reflected antigen accessibility to CD8 T cells recognition and the ability of EC of the BBB to provide the necessary signals in vivo for the activation and proliferation of transferred naïve HA-specific CD8 T cells, without being responsible for significative tissue damage to the CNS. From the transgenic mouse model we have developed a coculture model allowing in vitro analysis of the antigen presentation capacities by EC of BBB to HA-specific T cells, and the consequences on T cells activation. Our data showed that HA expression by BBB EC cultured in vitro is sufficient for activation of naïve HA-specific CD8 T cells, but is not associated with their proliferation. My Thesis work showed therefore that besides the role as anatomical barrier of the CNS, the BBB EC are involved in pathophysiology of CNS inflammatory diseases, and can behave like semi-professional antigen presenting cells participating in immune response regulation affecting the CNS.
12

Mécanismes de contrôle de l'activité des lymphocytes T CD4+ soumis à une stimulation antigénique chronique

Noval Rivas, Magali 14 December 2009 (has links)
Aujourd’hui, il est clairement établi que les lymphocytes T (LT) du donneur stimulés chroniquement par les antigènes mineurs (mHAgs) du receveur sont responsables du développement de la maladie du greffon contre l’hôte (GVHD). Il devient dès lors primordial de mettre au point des mécanismes permettant de contrôler l’activité et la fonctionnalité des LT du donneur soumis à une stimulation antigénique persistante. Nous avons montré dans un modèle in vivo de GVHD chronique qu’il est possible de réguler par deux mécanismes différents l’activité des LT du donneur stimulés chroniquement par un mHAg du receveur. Premièrement, la stimulation chronique des LT CD4+ du donneur par l’mHAg modifie fortement leurs fonctions. Ceux-ci s’adaptent à la présence de l’mHAg et y deviennent insensibles. Les LT CD4+ adaptés se caractérisent par un nombre élevé d’ARNm ainsi qu’une importante augmentation à leur surface de l’expression du récepteur inhibiteur PD-1. Nous avons montré que le blocage de la voie de costimulation négative PD-1/PD-L1 inverse et supprime l’adaptation des LT CD4+, stimule fortement leur production d’IFN-γ, entraînant le développement d’une maladie sévère. Le blocage de la voie de costimulation négative PD-1/PD-L1 aggrave aussi le choc toxique causé par l’injection de Lipopolysaccharide (LPS) et active la réaction immunitaire responsable du rejet de peaux mâles greffées sur des souris contenant des LT CD4+ adaptés. Ces résultats suggèrent que les LT CD4+ s’adaptent à la persistance de l’antigène en élevant leur seuil d’activation via la voie de costimulation négative PD-1/PD-L1. D’un autre côté, nos résultats soulignent la capacité que possèdent les cellules NK du receveur à contrôler l’activité ainsi que la prolifération des LT CD4+ du donneur soumis à une stimulation antigénique persistante. Cette faculté de régulation que détiennent les cellules NK préserve le receveur du développement d’une GVHD chronique. La régulation de la prolifération et de l’activité des LT CD4+ par les cellules NK s’effectue via NKG2D, un récepteur activateur présent à la surface de ces cellules. En effet, l’expression de certains ligands de NKG2D est augmentée dans les LT CD4+ activés. L’injection d’anticorps bloquant NKG2D inhibe l’activité régulatrice des cellules NK. Celle-ci semble s’effectuer par un mécanisme indépendant de la perforine. Nos résultats montrent que la voie de costimulation négative PD-1/PD-L1 est le mécanisme moléculaire utilisé par les LT CD4+ adaptés à l’mHAg pour calibrer leurs activités et leurs fonctionnalités en réponse à une stimulation antigénique persistante. Ils soulignent aussi le rôle des cellules NK dans le contrôle de l’activité et de la prolifération des LT CD4+ responsables du développement de la GVHD chronique.
13

Établissement d'une lignée de souris transgéniques exprimant l'isoforme p35 de la chaîne invariante et développement d'un anticorps polyclonal spécifique

Ménard, Catherine January 2006 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
14

Etude des mécanismes moléculaires et cellulaires régulant la présentation des antigènes de Toxoplasma gondii par le CMH I / Antigen presentation, T lymphocyte, intracellular parasite, transmembrane antigen, Sec22b SNARE

Buaillon, Célia 12 December 2016 (has links)
Les lymphocytes T (LT) CD8 jouent un rôle majeur dans la protection de l'hôte contre les parasites intracellulaires. Les LT CD8 reconnaissent des antigènes (ag) présentés par les molécules du CMH I à la surface des cellules présentatrices d'antigènes (CPA). En fonction de l'origine des ag, deux voies d'apprêtement et de présentation sont connues et caractérisées : la voie 'classique' pour les ag endogènes et viraux, et la voie 'croisée' pour les ag exogènes internalisés. Néanmoins, il existe des situations physiologiques de présentation d'ag exogènes par les molécules du CMH I qui ne correspondent à aucune de ces deux voies. C'est le cas lors de l'infection par Toxoplasma gondii (T. gondii). Les mécanismes d'apprêtement dans ce contexte infectieux sont encore mal connus. T. gondii est un parasite intracellulaire obligatoire résidant dans une vacuole qui est un compartiment distinct d'un phagosome. L'infection des cellules se fait par un mécanisme d'entrée actif qui induit la formation et la maturation de la vacuole parasitophore (PV). Les protéines de granules denses (GRA) sont une large famille de protéines du parasite, essentielles à la maturation de la PV. Les protéines GRA sont sécrétées sous forme soluble dans la vacuole, puis certaines sont adressées vers différentes structures membranaires, tel que le réseau membranaire intravacuolaire (IVN : intravacuolar network) et la membrane limitante de la PV (PVM), auxquels elles s'associent de manière périphérique ou transmembranaire. L'une de ces protéines GRA, GRA6, est l'ag source de l'épitope immunodominant HF10. Des travaux ont mis en évidence, dans une lignée de cellules dendritiques (DC), le rôle de la protéine SNARE Sec22b dans la fusion membranaire entre des vésicules du réticulum endoplasmique (RE) et la PV, et dans la présentation de l'ag soluble Ova sécrété par T. gondii. Nous avons étudié le rôle de Sec22b sur la présentation d'ag fortement associés aux membranes (GRA6) dans des DC primaires et des macrophages par le CMH I en utilisant un protocole de déplétion par transduction lentivirale de shRNA. Nos résultats ont confirmé le rôle de Sec22b sur la présentation de l'ag soluble dans les DC, ce qui n'est pas le cas dans les macrophages. Enfin, dans les DC et les macrophages, nous avons montré que Sec22b n'impacte pas la présentation d'ag fortement associés aux membranes tel que GRA6. En parallèle, notre équipe a mis en évidence que GRA6 est insérée dans la PVM, avec le Cter exposé du côté du cytosol de la cellule hôte. Auparavant, notre équipe a publié que la présentation efficace d'épitope dérivé de GRA6 requiert sa localisation au Cter de la protéine. Ces données nous ont incitées à étudier l'impact de la topologie d'ag transmembranaires, sur leur accessibilité à la voie d'apprêtement et de présentation CMH I. Nous avons développé un modèle d'étude pour comparer l'apprêtement et la présentation par le CMH I de l'épitope HF10 en fonction de son exposition : côté cytosol de la cellule hôte, ou, côté lumière de la vacuole. Les mesures de présentation antigénique par des macrophages et des DC primaires infectés ont révélé une diminution de la présentation de HF10 lorsqu'il est exposé du côté lumière de la vacuole. Mes travaux de thèse ont permis de mettre en évidence de nouveaux éléments dans la compréhension de la régulation de l'immunogénicité des ag de T. gondii aux niveaux cellulaire et moléculaire. / CD8 T lymphocytes play a major role for host protective immunity against intracellular parasites. CD8 T cells recognize antigens (Ag) presented by MHC I on the surface of antigen-presenting cells (APCs). Depending on the origin of Ag, two different processing and presentation pathways have been described: the classic one for endogenous and viral Ag, and the cross-presentation pathway for internalized exogenous Ag. Nevertheless, there are physiological conditions of exogenous Ag presentation by MHC I which do not fit any of these two pathways. It is the case for Toxoplasma gondii (T. gondii) infection. The mechanisms of processing in this infectious context are still unclear. T. gondii is an obligate intracellular parasite residing in a vacuole, a distinct compartment of a phagosome. Infection occurs via an active mechanism that induces the formation and maturation of parasitophorous vacuole (PV). Dense granule proteins (GRA) are a large parasite protein family, essential for the maturation of PV. GRA proteins are secreted as soluble proteins in the vacuole, and some are addressed to different membrane structures, such as the membrane intravacuolar network (IVN) and the vacuole limiting membrane (PVM). One of these GRA proteins (GRA6) is the source of an immunodominant epitope (HF10). Previous work highlighted in one dendritic cell line (DC), the role of SNARE Sec22b protein in membrane fusion between vesicles of the endoplasmic reticulum (ER) and the PV, and in the presentation of soluble Ova Ag, secreted by T. gondii. We have studied the role of Sec22b on Ag presentation of membrane-bound Ag (GRA6) in primary DC and macrophages by MHC I, using lentiviral transduction of shRNA. Our results confirmed the role of Sec22b on soluble Ag presentation in DC, which is not the case in macrophages. Finally, in DC and macrophages, we have shown that Sec22b does not impact on Ag presentation of membrane-bound Ags, such as GRA6. Besides this, our team highlighted that GRA6 is inserted in the PVM, with Cter exposed towards the host cell cytosol. Previously, our team published that effective presentation of the epitope derived from GRA6 requires its location at Cter of the protein. The association of these data prompted us to study the impact of Ag transmembrane topology on accessibility to MHC I processing and presentation. We developed a model to compare MHC I presentation of the HF10 epitope based on its exposition: at host cell cytosol, or, at vacuole lumen. Antigen presentation measurements by infected primary macrophages showed a decrease in HF10 presentation when exposed to the vacuole lumen side. My PhD work shed new light on the regulation of immunogenicity of T. gondii Ag at the cellular and molecular levels.
15

Interaction moléculaire entre HLA-DR et la molécule non-classique HLA-DM

Faubert, Amélie January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
16

Effet de la calprotectine sur l'expression du miR-155 dans le contexte d'une infection par le VIH-1

Boucher, Julien 11 December 2019 (has links)
Dès les premiers instants de l’infection, le VIH-1 provoque un dérèglement généralisé du système immunitaire en altérant les fonctions et en favorisant un phénotype pro-inflammatoire de plusieurs types de cellules de l’immunité innée et adaptative. Certains mécanismes associés au dysfonctionnement lors des étapes précoces de l’infection restent à élucider. Lors d’une infection par le tractus génital, les cellules myéloïdes produisent la calprotectine, un complexe protéique pro-inflammatoire. Le but de ce projet de recherche était d’élucider certains mécanismes, associés à la calprotectine, contribuant au dérèglement du système immunitaire. L’analyse de l’effet de la calprotectine sur l’infection de lymphocytes T CD4 a montré qu’elle provoque une augmentation de la production virale et de l’infectivité des virions. Lors de ces expériences, les préparations virales contenaient aussi des vésicules extracellulaires, dont des exosomes. Le gradient de vélocité à l’iodixanol et l’immunocapture ont permis de retirer les exosomes des préparations virales et de montrer qu’ils n’avaient pas d’effet sur l’infectivité des virions. Toutefois, l’analyse du contenu en microARN dans le gradient de vélocité, fait à partir du plasma de personnes infectées, a révélé que le miR-155 pourrait être l’agent causal de l’augmentation de la capacité infectieuse des virions. Nous avons alors émis l’hypothèse que la calprotectine augmentait l’infectivité des virions en régulant positivement l’expression du miR-155, menant à son enrichissement dans des vésicules extracellulaires (VE) différentes des exosomes. Dans ce projet de recherche, nous avons montré que, parmi cinq microARN pouvant influencer le cours de l’infection par le VIH-1, la calprotectine augmente préférentiellement l’expression du miR-155 dans les lymphocytes T CD4 infectées en activant la transcription du gène miR-155 en miR-155 primaire (pri-miR-155). Nous avons aussi observé que la surexpression du miR-155 par les cellules provoquait un enrichissement de ce microARN dans les VE, particulièrement dans les VE se retrouvant dans les fractions les plus denses du gradient de vélocité. Finalement, les VE enrichies en miR-155 augmentent la production de virions, possiblement par l’inhibition de l’expression de SOCS-1. Ce projet a permis de mettre en lumière un mécanisme par lequel la calprotectine exacerbe l’infection par le VIH-1 et contribue à déréguler le fonctionnement de cellules immunitaires.
17

Étude des voies d’apprêtement des antigènes viraux menant à la présentation antigénique par les CMH de classe I

English, Luc 06 1900 (has links)
Le contrôle immunitaire des infections virales est effectué, en grande partie, par les lymphocytes T CD8+ cytotoxiques. Pour y parvenir, les lymphocytes T CD8+ doivent être en mesure de reconnaître les cellules infectées et de les éliminer. Cette reconnaissance des cellules infectées s’effectue par l’interaction du récepteur T (TCR) des lymphocytes T CD8+ et des peptides viraux associés au complexe majeur d’histocompatibilité (CMH) de classe I à la surface des cellules hôtes. Cette interaction constitue l’élément déclencheur permettant l’élimination de la cellule infectée. On comprend donc toute l’importance des mécanismes cellulaires menant à la génération des peptides antigéniques à partir des protéines virales produites au cours d’une infection. La vision traditionnelle de cet apprêtement protéique menant à la présentation d’antigènes par les molécules du CMH propose deux voies cataboliques distinctes. En effet, il est largement admis que les antigènes endogènes sont apprêtés par la voie dite ‘‘classique’’ de présentation antigénique par les CMH de classe I. Cette voie implique la dégradation des antigènes intracellulaires par le protéasome dans le cytoplasme, le transport des peptides résultant de cette dégradation à l’intérieur du réticulum endoplasmique, leur chargement sur les molécules du CMH de classe I et finalement le transport des complexes peptide-CMH à la surface de la cellule où ils pourront activer les lymphocytes T CD8+. Dans la seconde voie impliquant des antigènes exogènes, le dogme veut que ceux-ci soient apprêtés par les protéases du compartiment endovacuolaire. Les peptides ainsi générés sont directement chargés sur les molécules de CMH de classe II à l’intérieur de ce compartiment. Par la suite, des mécanismes de recyclage vésiculaire assurent le transport des complexes peptide-CMH de classe II à la surface de la cellule afin de stimuler les lymphocytes T CD4+. Cependant, cette stricte ségrégation des voies d’apprêtement antigénique a été durement éprouvée par la capacité des cellules présentatrices d’antigènes à effectuer l’apprêtement d’antigènes exogènes et permettre leur présentation sur des molécules de CMH de classe I. De plus, l’identification récente de peptides d’origine intracellulaire associés à des molécules de CMH de classe II a clairement indiqué la présence d’interactions entre les deux voies d’apprêtement antigénique permettant de transgresser le dogme préalablement établi. L’objectif du travail présenté ici était de caractériser les voies d’apprêtement antigénique menant à la présentation d’antigènes viraux par les molécules du CMH de classe I lors d’une infection par le virus de l’Herpès simplex de type I (HSV-1). Dans les résultats rapportés ici, nous décrivons une nouvelle voie d’apprêtement antigénique résultant de la formation d’autophagosomes dans les cellules infectées. Cette nouvelle voie permet le transfert d’antigènes viraux vers un compartiment vacuolaire dégradatif dans la phase tardive de l’infection par le virus HSV-1. Cette mise en branle d’une seconde voie d’apprêtement antigénique permet d’augmenter le niveau de présentation de la glycoprotéine B (gB) virale utilisée comme modèle dans cette étude. De plus, nos résultats décrivent la formation d’une nouvelle forme d’autophagosomes dérivés de l’enveloppe nucléaire en réponse à l’infection par le virus HSV-1. Ces nouveaux autophagosomes permettent le transfert d’antigènes viraux vers un compartiment vacuolaire lytique, action également assurée par les autophagosomes dits classiques. Dans la deuxième partie du travail présenté ici, nous utilisons l’infection par le virus HSV-1 et la production de la gB qui en résulte pour étudier le trafic membranaire permettant le transfert de la gB vers un compartiment vacuolaire dégradatif. Nos résultats mettent en valeur l’importance du réticulum endoplasmique, et des compartiments autophagiques qui en dérivent, dans ces mécanismes de transfert antigénique permettant d’amplifier la présentation antigénique de la protéine virale gB sur des CMH de classe I via une voie vacuolaire. L’ensemble de nos résultats démontrent également une étroite collaboration entre la voie classique de présentation antigénique par les CMH de classe I et la voie vacuolaire soulignant, encore une fois, la présence d’interaction entre les deux voies. / Immune control of viral infections is mainly carried out by cytotoxic CD8+ T lymphocytes. To achieve this, CD8+ T lymphocytes must be able to recognize infected cells and eliminate them. This recognition of infected cells occurs by the interaction of the T cell receptor (TCR) of CD8+ T lymphocytes and viral peptides associated with major histocompatibility complex (MHC) class I on the surface of host cells. This interaction is the key element triggering the elimination of infected cells. This emphasizes the major role of cellular mechanisms leading to the generation of antigenic peptides from viral proteins. The traditional view of antigen presentation by MHC molecules proposes two segregated pathways. Indeed, it is widely accepted that endogenous antigens are processed by the ''classical'' MHC class I presentation pathway. This pathway involves the degradation of intracellular antigens by the proteasome complex in the cytoplasm of the cell, the resulting peptides are then translocated in the endoplasmic reticulum where they are loaded on MHC class I molecules, and finally peptide-MHC complex are exported at the cell surface to activate CD8+ T lymphocytes. In contrast, exogenous antigens internalized by endocytosis or phagocytosis are processed by hydrolases in the lytic endovacuolar compartment and the resulting peptides are loaded on MHC class II molecules. Thereafter, vesicle recycling mechanisms transport the peptide-MHC class II complex on the cell surface where they can stimulate CD4+ T lymphocytes. However, the strict segregation of these two pathways has been revisited to account for the ability of antigen presenting cells to present exogenous antigens on MHC class I molecules by a process called cross-presentation. Moreover, the recent finding that intracellular peptides might also be presented by MHC class II molecules clearly emphasized the presence of interactions between these two antigen processing pathways that transgress the previously established dogma. The objective of the work presented here was to characterize the antigen processing pathways leading to antigen MHC class I presentation during herpes simplex type I (HSV-1) infection. In the results reported here, we describe a new antigen processing pathway resulting from the formation of autophagosomes in HSV-1 infected cells. This new pathway allows the transfer of viral antigens in a lytic vacuolar compartment during the late phase of infection. The development and activation of this second pathway of antigen processing leads to an increased MHC class I presentation of the viral glycoprotein B (gB) used as a model in this study. Moreover, our results describe the establishment of a new form of autophagosomes derived from the nuclear envelope in response to HSV-1 infection. This new form of autophagosomes also contributes to viral antigen transfer to lytic vacuolar compartment in parallel to the action of classical autophagy. Our results also show a close collaboration between the classical MHC class I presentation pathway and vacuolar pathway induced by the formation of autophagosomes, still reinforcing the idea that these two pathways interact together to ensure optimal antigens processing during viral infection. In the second part of the work presented here, we use HSV-1 infection and the resulting viral glycoprotein B to study membrane trafficking allowing the transfer of gB to degradative vacuolar compartments. Our results highlight the role of the endoplasmic reticulum in antigen transfer mechanisms that induce an amplified MHC class I presentation of the viral glycoprotein B.
18

Étude des voies d’apprêtement des antigènes viraux menant à la présentation antigénique par les CMH de classe I

English, Luc 06 1900 (has links)
Le contrôle immunitaire des infections virales est effectué, en grande partie, par les lymphocytes T CD8+ cytotoxiques. Pour y parvenir, les lymphocytes T CD8+ doivent être en mesure de reconnaître les cellules infectées et de les éliminer. Cette reconnaissance des cellules infectées s’effectue par l’interaction du récepteur T (TCR) des lymphocytes T CD8+ et des peptides viraux associés au complexe majeur d’histocompatibilité (CMH) de classe I à la surface des cellules hôtes. Cette interaction constitue l’élément déclencheur permettant l’élimination de la cellule infectée. On comprend donc toute l’importance des mécanismes cellulaires menant à la génération des peptides antigéniques à partir des protéines virales produites au cours d’une infection. La vision traditionnelle de cet apprêtement protéique menant à la présentation d’antigènes par les molécules du CMH propose deux voies cataboliques distinctes. En effet, il est largement admis que les antigènes endogènes sont apprêtés par la voie dite ‘‘classique’’ de présentation antigénique par les CMH de classe I. Cette voie implique la dégradation des antigènes intracellulaires par le protéasome dans le cytoplasme, le transport des peptides résultant de cette dégradation à l’intérieur du réticulum endoplasmique, leur chargement sur les molécules du CMH de classe I et finalement le transport des complexes peptide-CMH à la surface de la cellule où ils pourront activer les lymphocytes T CD8+. Dans la seconde voie impliquant des antigènes exogènes, le dogme veut que ceux-ci soient apprêtés par les protéases du compartiment endovacuolaire. Les peptides ainsi générés sont directement chargés sur les molécules de CMH de classe II à l’intérieur de ce compartiment. Par la suite, des mécanismes de recyclage vésiculaire assurent le transport des complexes peptide-CMH de classe II à la surface de la cellule afin de stimuler les lymphocytes T CD4+. Cependant, cette stricte ségrégation des voies d’apprêtement antigénique a été durement éprouvée par la capacité des cellules présentatrices d’antigènes à effectuer l’apprêtement d’antigènes exogènes et permettre leur présentation sur des molécules de CMH de classe I. De plus, l’identification récente de peptides d’origine intracellulaire associés à des molécules de CMH de classe II a clairement indiqué la présence d’interactions entre les deux voies d’apprêtement antigénique permettant de transgresser le dogme préalablement établi. L’objectif du travail présenté ici était de caractériser les voies d’apprêtement antigénique menant à la présentation d’antigènes viraux par les molécules du CMH de classe I lors d’une infection par le virus de l’Herpès simplex de type I (HSV-1). Dans les résultats rapportés ici, nous décrivons une nouvelle voie d’apprêtement antigénique résultant de la formation d’autophagosomes dans les cellules infectées. Cette nouvelle voie permet le transfert d’antigènes viraux vers un compartiment vacuolaire dégradatif dans la phase tardive de l’infection par le virus HSV-1. Cette mise en branle d’une seconde voie d’apprêtement antigénique permet d’augmenter le niveau de présentation de la glycoprotéine B (gB) virale utilisée comme modèle dans cette étude. De plus, nos résultats décrivent la formation d’une nouvelle forme d’autophagosomes dérivés de l’enveloppe nucléaire en réponse à l’infection par le virus HSV-1. Ces nouveaux autophagosomes permettent le transfert d’antigènes viraux vers un compartiment vacuolaire lytique, action également assurée par les autophagosomes dits classiques. Dans la deuxième partie du travail présenté ici, nous utilisons l’infection par le virus HSV-1 et la production de la gB qui en résulte pour étudier le trafic membranaire permettant le transfert de la gB vers un compartiment vacuolaire dégradatif. Nos résultats mettent en valeur l’importance du réticulum endoplasmique, et des compartiments autophagiques qui en dérivent, dans ces mécanismes de transfert antigénique permettant d’amplifier la présentation antigénique de la protéine virale gB sur des CMH de classe I via une voie vacuolaire. L’ensemble de nos résultats démontrent également une étroite collaboration entre la voie classique de présentation antigénique par les CMH de classe I et la voie vacuolaire soulignant, encore une fois, la présence d’interaction entre les deux voies. / Immune control of viral infections is mainly carried out by cytotoxic CD8+ T lymphocytes. To achieve this, CD8+ T lymphocytes must be able to recognize infected cells and eliminate them. This recognition of infected cells occurs by the interaction of the T cell receptor (TCR) of CD8+ T lymphocytes and viral peptides associated with major histocompatibility complex (MHC) class I on the surface of host cells. This interaction is the key element triggering the elimination of infected cells. This emphasizes the major role of cellular mechanisms leading to the generation of antigenic peptides from viral proteins. The traditional view of antigen presentation by MHC molecules proposes two segregated pathways. Indeed, it is widely accepted that endogenous antigens are processed by the ''classical'' MHC class I presentation pathway. This pathway involves the degradation of intracellular antigens by the proteasome complex in the cytoplasm of the cell, the resulting peptides are then translocated in the endoplasmic reticulum where they are loaded on MHC class I molecules, and finally peptide-MHC complex are exported at the cell surface to activate CD8+ T lymphocytes. In contrast, exogenous antigens internalized by endocytosis or phagocytosis are processed by hydrolases in the lytic endovacuolar compartment and the resulting peptides are loaded on MHC class II molecules. Thereafter, vesicle recycling mechanisms transport the peptide-MHC class II complex on the cell surface where they can stimulate CD4+ T lymphocytes. However, the strict segregation of these two pathways has been revisited to account for the ability of antigen presenting cells to present exogenous antigens on MHC class I molecules by a process called cross-presentation. Moreover, the recent finding that intracellular peptides might also be presented by MHC class II molecules clearly emphasized the presence of interactions between these two antigen processing pathways that transgress the previously established dogma. The objective of the work presented here was to characterize the antigen processing pathways leading to antigen MHC class I presentation during herpes simplex type I (HSV-1) infection. In the results reported here, we describe a new antigen processing pathway resulting from the formation of autophagosomes in HSV-1 infected cells. This new pathway allows the transfer of viral antigens in a lytic vacuolar compartment during the late phase of infection. The development and activation of this second pathway of antigen processing leads to an increased MHC class I presentation of the viral glycoprotein B (gB) used as a model in this study. Moreover, our results describe the establishment of a new form of autophagosomes derived from the nuclear envelope in response to HSV-1 infection. This new form of autophagosomes also contributes to viral antigen transfer to lytic vacuolar compartment in parallel to the action of classical autophagy. Our results also show a close collaboration between the classical MHC class I presentation pathway and vacuolar pathway induced by the formation of autophagosomes, still reinforcing the idea that these two pathways interact together to ensure optimal antigens processing during viral infection. In the second part of the work presented here, we use HSV-1 infection and the resulting viral glycoprotein B to study membrane trafficking allowing the transfer of gB to degradative vacuolar compartments. Our results highlight the role of the endoplasmic reticulum in antigen transfer mechanisms that induce an amplified MHC class I presentation of the viral glycoprotein B.
19

Études du ciblage intracellulaire des molécules non classiques du complexe majeur d'histocompatibilité de classe II

Brunet, Alexandre January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
20

Antigen and superantigen presentation as defined by the MHCII-accessory proteins and associated-peptides

Fortin, Jean-Simon 05 1900 (has links)
MHCII molecules expose a weave of antigens, which send survival or activation signals to T lymphocytes. The ongoing process of peptide binding to the MHC class II groove implicates three accessory molecules: the invariant chain, DM and DO. The invariant chain folds and directs the MHCII molecules to the endosomal pathway. Then, DM exchanges the CLIP peptide, which is a remnant of the degraded invariant chain, for peptides of better affinity. Expressed in highly specialized antigen presenting cells, DO competes with MHCII molecules for DM binding and favors the presentation of receptor-internalized antigens. Altogether, these molecules exhibit potential immunomodulatory properties that can be exploited to increase the potency of peptide vaccines. DO requires DM for maturation and to exit the ER. Interestingly, it is possible to monitor this interaction through a conformation change on DOβ that is recognized by the Mags.DO5 monoclonal antibody. Using Mags.DO5, we showed that DM stabilizes the interactions between the DO α1 and β1 chains and that DM influences DO folding in the ER. Thus, the Mags.DO5+ conformation correlates with DO egress from the ER. To further evaluate this conformation change, directed evolution was applied to DO. Of the 41 unique mutants obtained, 25% were localized at the DM-DO binding interface and 12% are at the solvent-exposed β1 domain, which is thought to be the Mags.DO5 epitope. In addition, I used the library to test the ability of HLA-DO to inhibit HLA-DM and sorted for the amount of CLIP. Interestingly, most of the mutants showed a decrease inhibitory effect, supporting the notion that the intrinsic instability of DO is a required for its function. Finally, these results support the model in which DO competes against classical MHCII molecules by sequestering DM chaperone’s function. MHCII molecules are also characterized by their ability to present superantigens, a group of bacterial or viral toxins that coerces MHCII-TCR binding in a less promiscuous fashion than what is observed in a canonical setting. While the mechanism of how bacterial superantigens form trimeric complexes with TCR and MHCII is well understood, the mouse mammary tumor virus superantigens (vSAG) are poorly defined. In the absence of a crystal structure, I chose a functional approach to examine the relation between vSAG, MHCII and TCR with the goal of uncovering the overall trimolecular architecture. I showed that TCR concomitantly binds both the MHCII α chain and the vSAG and that TCR-MHCII docking is almost canonical when coerced by vSAGs. Because many peptides may be tolerated in the MHCII groove, the pressure exerted by vSAG seems to tweak conventional TCR-MHCII interactions. Furthermore, my results demonstrate that vSAG binding to MHCII molecules is conformation-dependent and abrogated by the CLIP amino-terminal residues extending outside the peptide-binding groove. In addition, they also suggest that vSAGs cross-link adjacent MHCIIs and activate T cells via a TGXY motif. / Les molécules du CMH présentent une panoplie d'antigènes qui, lorsque reconnus par un lymphocyte T spécifique, indique à ce dernier de survivre ou de s'activer. Le processus menant à la liaison d'un peptide à la poche du CMH de classe II, implique trois molécules accessoires, soit la chaine invariante, DM et DO. La chaine invariante replie et dirige les molécules du CMHII jusqu'à la voie endosomale. Ensuite, DM échange CLIP, peptide découlant de la dégradation de la chaine invariante, pour d'autres ayant une meilleure affinité. Exprimé seulement chez certaines cellules présentatrices, DO compétitionne avec les molécules du CMHII pour la liaison à DM et ainsi favorise la présentation d'antigènes internalisés par des récepteurs membranaires. Ensemble, ces protéines ont un potentiel immunomodulatoire pouvant être exploité afin d'augmenter l'efficacité de vaccin peptidique. DO requiert DM pour arriver à maturité et sortir du RE. Cette interaction, qui induit un changement de conformation dans la chaine β de DO, peut être sondée à l'aide de l'anticorps monoclonal Mags.DO5. En utilisant cet anticorps, nous avons montré que DM stabilise l'interaction entre les domaines α1 et β1 de DO et influence son repliement dans le RE. Donc, la conformation qui révèle l’épitope Mags.DO5 corrèle avec la migration de DO hors du RE. Afin d'étudier plus précisément ce changement de conformation, DO fut contraint à une ronde d’évolution dirigée. Des 41 mutants obtenus, 25% se retrouvent à l'interface DO- DM et 12% se retrouvent à la surface exposée au solvant du domain β1, région hypothétique de l'épitope Mags.DO5. De plus, la bibliothèque de mutants a été testée pour son habileté à inhiber l'activité de DM. La plupart des mutants montre une activité inhibitrice diminuée, ce qui supporte le model où DO compétionne les molécules du CMHII en séquestrant le rôle chaperon de DM. Les molécules du CMHII ont l'unique habileté de présenter les superantigènes, une famille de toxines virales et bactériennes qui force l'interaction CMHII-TCR de façon beaucoup moins spécifique qu'en contexte canonique. Alors que la façon dont les superantigènes bactériens s'assemblent avec le CMHII et le TCR soit bien comprise, la nature du complexe trimoléculaire découlant des superantigènes du virus de la tumeur mammaire de la souris (vSAG) reste mal définie. En l'absence d'une structure cristalline, une approche fonctionnelle a été choisie pour examiner la relation des vSAGs avec le CMHII et le TCR avec le but de dévoiler l'architecture de ce multi-complexe protéique. Je montre que le TCR lie parallèlement la chaine α du CMHII et vSAG, ce qui résulte en une interaction presque canonique. Puisque différents peptides peuvent être tolérés lors de cet ancrage, il semble que vSAG ajuste les interactions CMHII-TCR conventionnelles. En outre, mes résultats montrent que vSAG reconnait un épitope conformationnel et que cette liaison peut être abrogée par l'extension amino-terminale du peptide CLIP, laquelle s'étend en deçà de la niche. Finalement, mes résultats suggèrent que vSAG peut réticuler plusieurs CMHII adjacents et active les cellules T via son motif TGXY.

Page generated in 0.417 seconds