1 |
Desenvolvimento de um simulador antropomórfico para simulação e medidas de dose e fluxo de nêutrons na instalação para estudos em BNCT / Development of an anthropomorfic simulator for simulation and measurements of neutron dose and flux in the facility for BNCT studiesMuniz, Rafael Oliveira Rondon 11 August 2010 (has links)
A instalação do IPEN para pesquisas em BNCT (Terapia por Captura de Nêutrons em Boro) utiliza o canal de irradiação número 3 do reator IEA-R1, no qual tem-se um campo misto de radiação nêutrons e gama. As pesquisas em andamento necessitam que o campo de radiação, na posição de irradiação de amostra, tenha na composição os nêutrons térmicos maximizados e os componentes de nêutrons epitérmicos, rápidos e radiação gama minimizados. Este trabalho foi desenvolvido com o objetivo de avaliar se o campo de radiação atual na instalação é adequado aos trabalhos em BNCT. Para cumprir com este objetivo, uma metodologia para dosimetria de nêutrons térmicos e radiação gama em campos mistos de altas doses, que não era disponível no IPEN, foi implantada no Centro de Engenharia Nuclear do IPEN, utilizando dosímetros termoluminescentes TLDs 400, 600 e 700. Para as medidas de fluxo de nêutrons térmicos e epitérmicos foram utilizados detetores de ativação de ouro aplicando a técnica de razão de cádmio. Um simulador antropomórfico cilíndrico composto de discos de acrílico foi desenvolvido e testado na instalação e para obter valores teóricos do fluxo de nêutrons e a dose ao longo do simulador antropomórfico foi utilizado o código computacional DOT 3.5. Na posição correspondente a aproximadamente metade do comprimento do cilindro do simulador antropomórfico, foram obtidos os seguintes valores: fluxo de nêutrons térmicos (2,52 ± 0,06).108n/cm2s, epitérmicos (6,17 ± 0,26).107n/cm2s, dose absorvida devido a nêutrons térmicos de (4,2 ± 1,8)Gy e devido a radiação gama (10,1 ± 1,3)Gy. Os valores obtidos mostram que os fluxos de nêutrons térmicos e epitérmicos são adequados para os estudos em BNCT, porém, a dose devido a radiação gama está elevada, indicando que a instalação deve ser aprimorada. / IPEN facility for researches in BNCT (Boron Neutron Capture Therapy) uses IEA-R1 reactor\'s irradiation channel number 3, where there is a mixed radiation field neutrons and gamma. The researches in progress require the radiation fields, in the position of the irradiation of sample, to have in its composition maximized thermal neutrons component and minimized, fast and epithermal neutron flux and gamma radiation. This work was developed with the objective of evaluating whether the present radiation field in the facility is suitable for BNCT researches. In order to achieve this objective, a methodology for the dosimetry of thermal neutrons and gamma radiation in mixed fields of high doses, which was not available in IPEN, was implemented in the Center of Nuclear Engineering of IPEN, by using thermoluminescent dosimeters TLDs 400, 600 and 700. For the measurements of thermal and epithermal neutron flux, activation detectors of gold were used applying the cadmium ratio technique. A cylindrical phantom composed by acrylic discs was developed and tested in the facility and the DOT 3.5. computational code was used in order to obtain theoretical values of neutron flux and the dose along phantom. In the position corresponding to about half the length of the cylinder of the phantom, the following values were obtained: thermal neutron flux (2,52 ± 0,06).108n/cm2s, epithermal neutron flux (6,17 ± 0,26).107.106n/cm2s, absorbed dose due to thermal neutrons (4,2 ± 1,8)Gy and (10,1 ± 1,3)Gy due to gamma radiation. The obtained values show that the fluxes of thermal and epithermal neutrons flux are appropriate for studies in BNCT, however, the dose due to gamma radiation is high, indicating that the facility should be improved.
|
2 |
Desenvolvimento de um simulador antropomórfico para simulação e medidas de dose e fluxo de nêutrons na instalação para estudos em BNCT / Development of an anthropomorfic simulator for simulation and measurements of neutron dose and flux in the facility for BNCT studiesRafael Oliveira Rondon Muniz 11 August 2010 (has links)
A instalação do IPEN para pesquisas em BNCT (Terapia por Captura de Nêutrons em Boro) utiliza o canal de irradiação número 3 do reator IEA-R1, no qual tem-se um campo misto de radiação nêutrons e gama. As pesquisas em andamento necessitam que o campo de radiação, na posição de irradiação de amostra, tenha na composição os nêutrons térmicos maximizados e os componentes de nêutrons epitérmicos, rápidos e radiação gama minimizados. Este trabalho foi desenvolvido com o objetivo de avaliar se o campo de radiação atual na instalação é adequado aos trabalhos em BNCT. Para cumprir com este objetivo, uma metodologia para dosimetria de nêutrons térmicos e radiação gama em campos mistos de altas doses, que não era disponível no IPEN, foi implantada no Centro de Engenharia Nuclear do IPEN, utilizando dosímetros termoluminescentes TLDs 400, 600 e 700. Para as medidas de fluxo de nêutrons térmicos e epitérmicos foram utilizados detetores de ativação de ouro aplicando a técnica de razão de cádmio. Um simulador antropomórfico cilíndrico composto de discos de acrílico foi desenvolvido e testado na instalação e para obter valores teóricos do fluxo de nêutrons e a dose ao longo do simulador antropomórfico foi utilizado o código computacional DOT 3.5. Na posição correspondente a aproximadamente metade do comprimento do cilindro do simulador antropomórfico, foram obtidos os seguintes valores: fluxo de nêutrons térmicos (2,52 ± 0,06).108n/cm2s, epitérmicos (6,17 ± 0,26).107n/cm2s, dose absorvida devido a nêutrons térmicos de (4,2 ± 1,8)Gy e devido a radiação gama (10,1 ± 1,3)Gy. Os valores obtidos mostram que os fluxos de nêutrons térmicos e epitérmicos são adequados para os estudos em BNCT, porém, a dose devido a radiação gama está elevada, indicando que a instalação deve ser aprimorada. / IPEN facility for researches in BNCT (Boron Neutron Capture Therapy) uses IEA-R1 reactor\'s irradiation channel number 3, where there is a mixed radiation field neutrons and gamma. The researches in progress require the radiation fields, in the position of the irradiation of sample, to have in its composition maximized thermal neutrons component and minimized, fast and epithermal neutron flux and gamma radiation. This work was developed with the objective of evaluating whether the present radiation field in the facility is suitable for BNCT researches. In order to achieve this objective, a methodology for the dosimetry of thermal neutrons and gamma radiation in mixed fields of high doses, which was not available in IPEN, was implemented in the Center of Nuclear Engineering of IPEN, by using thermoluminescent dosimeters TLDs 400, 600 and 700. For the measurements of thermal and epithermal neutron flux, activation detectors of gold were used applying the cadmium ratio technique. A cylindrical phantom composed by acrylic discs was developed and tested in the facility and the DOT 3.5. computational code was used in order to obtain theoretical values of neutron flux and the dose along phantom. In the position corresponding to about half the length of the cylinder of the phantom, the following values were obtained: thermal neutron flux (2,52 ± 0,06).108n/cm2s, epithermal neutron flux (6,17 ± 0,26).107.106n/cm2s, absorbed dose due to thermal neutrons (4,2 ± 1,8)Gy and (10,1 ± 1,3)Gy due to gamma radiation. The obtained values show that the fluxes of thermal and epithermal neutrons flux are appropriate for studies in BNCT, however, the dose due to gamma radiation is high, indicating that the facility should be improved.
|
3 |
Cálculo de coeficiente de conversão de dose em tomossíntese mamária digital utilizando simulador antropomórfico adulto feminino e o código MCNPX / Calculation of dose conversion coefficient in breast tomosynthesis digital using anthropomorphic phantom adult female and the code MCNPXAlves, Marcos Santos 21 February 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The breast tomosynthesis is appearing in several studies that aim to investigate most
appropriate parameters to obtaining images of high quality with dose values of ionizing
radiation within the limits imposed for digital mammography. The parameters are
related to an angular range limited used in examinations, the number of projections,
the X-rays beam energies, and the reconstruction of projections, using specific
algorithm, mainly. The advantage of tomosynthesis while a new mammographic
technology in relation to the other techniques that employ X-rays is its potential to
reduced overlap effect of breast tissue. The contribution of variation of the angle of the
beams on the dose in breast examined, due to a change in the geometry used in the
examination, should be investigated. To determine the impact that this variation has
on the dose in the breast and in other organs and tissues of the human body, an
important tool is the Computational Simulation by Monte Carlo. The main proposal of
this work was to use the code of Monte Carlo N-Particle eXtended (MCNPX) to study
absorbed doses in breast and other organs of the patient during the examination of
digital tomosynthesis mammary glands. For this reason, it was used an
anthropomorphic female adult phantom with representation of the body, tissues and
internal structures and realistic adult patient incorporated in a scenario of radiation from
a commercial model of equipment of each. The values of absorbed doses found with
the AGMS-M tomosynthesis meter were lower than in digital mammography, the
differences between tomosynthesis and mammography were 12.3% using 24 kVp,
10.74% for 28 kVp and 11.21% for 30 kVp. Comparing the experimental and that found
in the simulation, the values of the absorbed doses had a smaller difference verified to
24 kVp, of 3.3% and a greater difference to 28 kVp, of 6.2%. The results obtained for
the colon and brain have presented relative error (R) above 10% due to the occurrence
of natural shielding and distance of these components of the primary beam of radiation.
The CCs of equivalent dose in this study show that the estimated dose in the simulator
anthropomorphic adult female is much greater in each of which in mammography,
because the configuration of the acquisition of different geometry between digital
mammography and tomosynthesis, and the sweep time which is higher in each. / A tomossíntese mamária vem aparecendo em vários estudos que buscam investigar
tanto parâmetros mais adequados para obtenção de imagens de qualidade quanto
valores de doses de radiação ionizante dentro dos limites impostos para mamografia
digital. Os parâmetros estão relacionados às energias dos feixes de raios X nos
exames, ao intervalo angular das projeções, ao número de projeções, e à
reconstrução dessas, principalmente. A reconstrução das imagens é realizada
utilizando-se algoritmos específicos. A vantagem da tomossíntese enquanto nova
tecnologia em relação as outras técnicas mamográficas que empregam raios X é o
seu potencial de imageamento com reduzido efeito de sobreposição do tecido
mamário. A contribuição da variação angular dos feixes sobre a dose na mama
examinada, devido à alteração na geometria do exame, deve ser investigada. Para
determinar o impacto que essa variação exerce sobre a dose na mama e nos demais
órgãos e tecidos do corpo humano, uma importante ferramenta é a simulação
computacional por Monte Carlo. A proposta principal deste trabalho foi utilizar o código
de Monte Carlo N-Particle eXtended (MCNPX) para estudar as doses absorvidas na
mama e demais órgãos do paciente durante o exame de tomossíntese digital
mamária. Para isso, foi utilizado um simulador antropomórfico adulto feminino com
representação dos órgão, tecidos e estruturas internas bem realista de paciente adulto
incorporado em cenário de radiação de um modelo comercial de equipamento de
tomossíntese. Os valores das doses absorvidas encontrados com o medidor AGMSM
em tomossíntese mostrou-se menor do que na mamografia digital, as diferenças
entre a tomossíntese e a mamografia foram 12,3% empregando-se 24 kVp, 10,74%
para 28 kVp e 11,21% para 30 kVp. Comparando o experimental e o encontrado na
simulação, os valores das doses absorvidas teve uma menor diferença verificada para
24 kVp, de 3,3% e uma maior diferença para 28 kVp, de 6,2%. Os resultados obtidos
para o cólon e cérebro apresentaram erro relativo (R) acima de 10%, isso devido a
decorrência de blindagem natural e da distância desses órgãos ao feixe primário de
radiação. Os Coeficientes de conversão de dose equivalente obtidos mostraram que
a dose estimada no simulador antropomórfico adulto feminino é maior na tomossíntese do que na mamografia digital, devido a configuração de aquisição de
geometria diferente entre a mamografia e tomossíntese, e ao tempo de varredura, que
é maior na tomossíntese.
|
4 |
Caracterização das exposições ocupacionais e eficiência da dosimetria pessoal em radiologia intervencionista vascularBacchim Neto, Fernando Antonio. January 2017 (has links)
Orientador: Diana Rodrigues Pina / Resumo: A Radiologia Intervencionista (RI) é a área da medicina que proporciona as maiores exposições ocupacionais. Os valores de dose aos quais os intervencionistas são expostos são difíceis de padronizar. Nesta pesquisa apresentamos uma avaliação completa das exposições ocupacionais e determinamos a eficiência de distintos métodos de dosimetria pessoal utilizados na RI. Essa pesquisa foi abordada em 2 etapas, conforme descrito a seguir: A primeira etapa se baseou em caracterizar as exposições ocupacionais em diferentes modalidades de procedimentos de RI vascular para duas categorias de profissionais e estimar o número de procedimentos anuais que cada profissional pode realizar sem exceder os limites de dose. Foi avaliada a exposição ocupacional, através de dosimetria termoluminescente, em diferentes partes do corpo (cristalino, tireoide, tórax, abdômen, pés e mãos) de duas categorias de intervencionistas (principais e assistentes) em três modalidades diferentes de procedimentos de RI vascular. As maiores doses equivalentes foram encontradas para as mão de ambos os profissionais, podendo chegar a aproximadamente 9 mSv em um único procedimento. Algumas regiões dos profissionais em alguns procedimentos podem receber, durante o ano, níveis de doses perigosamente perto dos limites anuais. Dosímetros posicionados no tórax podem subestimar as doses para outras regiões do corpo, especialmente abdômen, extremidades e cristalinos. Na segunda etapa foram avaliadas as eficiências de 6 diferent... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Interventional Radiology (IR) is the area of medicine that provides the largest occupational exposures. The dose values to which interventionists are exposed are difficult to standardize. In this research we present a complete evaluation of occupational exposures and determine the efficiency of different personal dosimetry methods used in IR. This research was performed in 2 stages, as described below: The first step was to characterize the occupational exposures in different modalities of vascular IR procedures for two categories of professionals. We also estimated the number of annual procedures that each professional can perform without exceeding the dose limits. Occupational exposures were evaluated in different body parts (crystalline, thyroid, thorax, abdomen, feet and hands) by two interventional categories (primary and assistants) in three different modalities of vascular IR procedures. The highest equivalent doses were found for the hands of both professionals, reaching approximately 9 mSv in a single procedure. Some regions of professionals in some procedures may receive dose levels during the year dangerously close to annual limits. Dosimeters positioned in the chest may underestimate the doses to other regions of the body, especially the abdomen, extremities and crystalline. The second stage, we evaluated the efficiencies of 6 different personal dosimetry methodologies used internationally to estimate the effective dose received by interventional professionals. An... (Complete abstract click electronic access below) / Mestre
|
5 |
Modificação das posturas dos simuladores antropomórficos voxel de referência Adult Male (AM) e Adult Female (AF) para cálculo de coeficientes de conversão de dose / Posture modification of the reference anthropomorphic voxel phantom Adult Male (AM) and Adult Female (AF) for dose conversion coefficients calculationGaleano, Diego Castanon 11 October 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Establish limits to the exposure of the population to various ionizing radiation sources is
crucial to prevent occupationally exposed individuals and the public, to their deleterious
effects. In computational ambit, it is necessary that different exposure scenarios are
simulated in order to obtain the dose coefficients (CCs), which relate physical dosimetric
quantities - as absorbed dose, Fluency or Kerma Air - with limiting quantities - as equivalent
and / or effective dose. Under certain exposure conditions, the individual's posture is not
always the same, and the scenario shall be described as realistic as possible. In this work, the
AM (Adult Male) and AF (Adult Female) anthropomorphic reference phantom of ICRP
publication n° 110 had their postures modified from supine posture (standing) to sitting
posture. The change of posture was performed through of a subroutine written in the Visual
Monte Carlo code (VMC) to rotate the thigh region of the phantom and position it between
the region of the leg and torso. The ScionImage software was used to reconstruct and smooth
the knee and hip contours in a sitting posture phantom, and for 3D visualization of phantom
was used VolView software. After this step the MCNPX radiation transport code was used
for the calculation of fluence-to-dose conversion coefficients (CCs) to six irradiation
geometries: AP, PA, LLAT, RLAT, ROT and ISO, recommended by ICRP. The results were
compared between the phantoms in standing and sitting postures, for both sexes, in order to
assess differences in scattering and absorption of radiation in different postures. The results
show significant differences of up to 100% in the equivalent dose conversion coefficients of
organs in the pelvic region, 79 % in organs with distribution in the whole body (such as skin,
muscle, lymph nodes, bone marrow and trabecular bone) and a difference of 27% to effective
dose conversion coefficients. Moreover in order to conduct a comparative study between
two types of simulators, was estimated CCs equivalent and effective dose of adult male
hybrid simulators, UFHADM, and female, UFHADF, in a sitting posture, and compared to
the AM and AF simulators, also in the sitting posture, where it was observed significant
difference in energies below 0.05 MeV. This study demonstrated the feasibility of using
anthropomorphic phantoms in the sitting posture to represent more realistic postures and can
be used in studies in medical and occupational dosimetry. This study demonstrated the
feasibility of using anthropomorphic simulators reference in the seated position to represent
more realistic positions can thus be used in studies in medical and occupational dosimetry
as well as the importance of developing as realistic simulators as possible to dose estimation
as faithful as possible in different irradiation scenarios. / Estabelecer limites à exposição da população a diversas fontes de radiação ionizante é de
fundamental importância para prevenir indivíduos, ocupacionalmente expostos e do público,
dos seus efeitos deletérios. Em âmbito computacional, é necessário que diferentes cenários
de exposição sejam simulados, visando à obtenção dos coeficientes de dose (CCs), que
associam grandezas dosimétricas físicas – como dose absorvida, fluência ou kerma no ar –
com grandezas limitantes – como equivalente e/ou dose efetiva. Em certas condições de
exposição a posição do indivíduo nem sempre é a mesma, e o cenário deve ser descrito da
forma mais realística possível. Neste trabalho, os simuladores antropomórficos de referência
da publicação nº 110 da ICRP, AM (Adult Male) e AF (Adult Female), tiveram suas posturas
modificadas da postura supinada (em pé) para a postura sentada. A mudança de postura foi
realizada por meio de uma subrotina escrita no software Visual Monte Carlo (VMC) para
rotacionar a região da coxa dos simuladores e posicioná-la entre a região da perna e do
tronco. O software ScionImage foi utilizado para reconstruir e suavizar os contornos no
joelho e quadril dos simuladores na postura sentada, e com ferramenta auxiliar para
visualização 3D dos simuladores foi utilizado o software VolView. Após essa etapa foi
utilizado o código de transporte de radiação MCNPX para o cálculo dos coeficientes de
conversão (CCs) de dose equivalente e efetiva por fluência de partículas, calculados para
seis geometrias de irradiação AP, PA, LLAT, RLAT, ROT e ISO, recomendadas pela ICRP.
Os resultados foram comparados entre os simuladores em pé e sentado, para ambos os
gêneros, com o objetivo de avaliar as diferenças de espalhamento e absorção da radiação
para as diferentes posturas. Os resultados dos CCs mostram diferenças significativas, de até
100 % para dose equivalente dos órgãos situados a região pélvica e 79 % em órgãos com
distribuição em todo o corpo como, por exemplo, pele, músculo, nódulos linfáticos medula
óssea e trabécula óssea, e uma diferença de 14 % para dose efetiva. Ademais, a fim de
realizar um estudo comparativo entre dois tipos de simuladores, foi estimado os CCs de dose
equivalente e efetiva dos simuladores híbridos adulto masculino, UFHADM, e feminino,
UFHADF, na postura sentada, e comparado com os simuladores AM e AF, também na
postura sentada, onde foi observado diferença significativa em energias abaixo de 0,05 MeV.
Este estudo demonstrou a viabilidade do uso dos simuladores antropomórficos de referência
na postura sentada para representar posturas mais realísticas podendo assim, ser utilizado em
estudos na dosimetria médica e ocupacional, bem como a importância de desenvolver
simuladores tão realista quanto possíveis para estimativa de dose tão fiéis quanto possíveis
em diversos cenários de irradiação.
|
Page generated in 0.0686 seconds