• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 13
  • 9
  • 8
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 104
  • 31
  • 25
  • 13
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Role of Cathepsin G in Atherosclerosis

Rafatian, Naimeh 11 January 2013 (has links)
Angiotensin II (Ang II) is an important modulator for development of atherosclerosis from early stage foam cell formation to advanced stage plaque rupture. Recently, the importance of locally generated Ang II, especially in macrophages, has become more evident. Generation of Ang II by several enzymes other than ACE and renin has been shown mainly in vitro. Cathepsin G is one these enzymes which is expressed in neutrophils and macrophages. Macrophages are one of the primary and crucial cells in atherosclerotic lesions which become lipid-laden foam cells through lipoprotein uptake. We hypothesized that activation of nuclear factors in foam cells increases Ang II by modulation of the renin angiotensin system (RAS) genes and cathepsin G. We also hypothesized that cathepsin G, through its Ang II generating activity and its other catalytic functions, promotes atherosclerosis. The present study assessed the Ang I and II levels and expression of the RAS genes in THP-1 cells, a human acute monocytic leukemia cell line, and in peritoneal and bone marrow-derived macrophages after exposure to acetylated LDL (ac-LDL). I also evaluated how RAS blockade would affect foam cell formation in THP-1 cells. In parallel, I assessed the role of cathepsin G in Ang II generation and in the progression of atherosclerosis in cathepsin G heterozygous knockout mice on an Apoe-/- background (Ctsg+/-Apoe-/- mice). Ac-LDL treatment increased Ang I and Ang II levels in cell lysates and media from THP-1 cells but not in peritoneal or bone marrow-derived macrophages from wild type C57BL/6 mice. In ac-LDL-treated THP-1 cells, ACE and cathepsin G mRNA levels and activities were elevated. Angiotensinogen mRNA is increased but not the angiotensinogen protein concentration. Renin mRNA level and activity were not altered by ac-LDL treatment. Blocking RAS by an AT1 receptor blocker, ACE inhibitors or a renin inhibitor decreased cholesteryl ester content of THP-1 cells after exposure to ac-LDL. To confirm that the Ang II effect on foam cell formation was not unique to ac-LDL, we treated the THP-1 macrophages with a renin inhibitor or an AT1 receptor inhibitor after exposure to oxidized LDL (ox-LDL). RAS blockade in ox-LDL-treated cells also abolished cholesteryl ester formation. To see how Ang II plays a role in foam cell formation we assessed the effect of RAS inhibitors on SR-A, the principal receptor for mediating ac-LDL entry into the cells and on acyl-CoA:cholesterol acyl transferase (ACAT-1), the enzyme responsible for intracellular cholesterol esterification. RAS blockade in both ac-LDL- and ox-LDL-treated cells decreased SR-A and ACAT-1 protein levels. Cathepsin G partial deficiency on an Apoe-/- background did not change Ang II levels in peritoneal or bone marrow-derived macrophage cell lysates or media. This deficiency also did not affect immunoreactive angiotensin peptide levels in atherosclerotic lesions. After 8 weeks on a high fat diet Ctsg+/-Apoe-/- mice were similar to Ctsg+/+Apoe-/- mice in terms of lesion size and serum cholesterol levels but the Ctsg+/+Apoe-/- mice had more advanced lesions with more collagen and smooth muscle cells and fewer macrophages. Moreover, Ctsg+/+Apoe-/- mice had more apoptotic cells than their Ctsg+/-Apoe-/- littermates. Overall, our findings indicate that Ang II is increased in foam cells and this endogenous Ang II is involved in cholesteryl ester formation, possibly by regulating the levels of ACAT-1 and SR-A. We did not find any role for cathepsin G in generation of Ang II in mice but cathepsin G does, nevertheless, promote the progression of atherosclerotic lesions to a more advanced stage.
32

Progressive Alterations in Microstructural Organization and Biomechanical Response in the ApoE Mouse Model of Aneurysm and the Underlying Changes in Biochemistry

Haskett, Darren January 2015 (has links)
Abdominal Aortic Aneurysm (AAA) is a complex disease that leads to a localized dilation of the infrarenal aorta that develops over years. Longitudinal information in humans has been difficult to obtain for this disease, therefore mouse models have become increasingly used to study the development of AAAs. The objective of this study was to determine any changes that occur in the biomechanical response and fiber microstructure in the apolipoprotein E difficient (ApoE-/-) angiotensin II (AngII) infused mouse model of aneurysm during disease progression, as well as determine some of the underlying changes in biochemistry, and demonstrate a novel method of reducing any pathogenic protease activity. Using a Microbiaxial Opto-Mechanical Device (MOD), ex vivo studies included adult aortas of ApoE-/- AngII infused mice excised and tested for mechanical response simultaneously imaged using two-photon microscopy to assess the microstructure at multiple time points. In vitro and ex vivo studies have shown changes in protease concentrations with the use of FRET based proteolytic beacons able to provide a non-destructive method to quantify protease activity measured against mechanical and microstructural changes. In vitro studies have demonstrated protease activity can be reduced using a molecule providing a positive feedback mechanism for protease inhibition and possibly provide a reduction in aneurysm progression.
33

Role of Cathepsin G in Atherosclerosis

Rafatian, Naimeh 11 January 2013 (has links)
Angiotensin II (Ang II) is an important modulator for development of atherosclerosis from early stage foam cell formation to advanced stage plaque rupture. Recently, the importance of locally generated Ang II, especially in macrophages, has become more evident. Generation of Ang II by several enzymes other than ACE and renin has been shown mainly in vitro. Cathepsin G is one these enzymes which is expressed in neutrophils and macrophages. Macrophages are one of the primary and crucial cells in atherosclerotic lesions which become lipid-laden foam cells through lipoprotein uptake. We hypothesized that activation of nuclear factors in foam cells increases Ang II by modulation of the renin angiotensin system (RAS) genes and cathepsin G. We also hypothesized that cathepsin G, through its Ang II generating activity and its other catalytic functions, promotes atherosclerosis. The present study assessed the Ang I and II levels and expression of the RAS genes in THP-1 cells, a human acute monocytic leukemia cell line, and in peritoneal and bone marrow-derived macrophages after exposure to acetylated LDL (ac-LDL). I also evaluated how RAS blockade would affect foam cell formation in THP-1 cells. In parallel, I assessed the role of cathepsin G in Ang II generation and in the progression of atherosclerosis in cathepsin G heterozygous knockout mice on an Apoe-/- background (Ctsg+/-Apoe-/- mice). Ac-LDL treatment increased Ang I and Ang II levels in cell lysates and media from THP-1 cells but not in peritoneal or bone marrow-derived macrophages from wild type C57BL/6 mice. In ac-LDL-treated THP-1 cells, ACE and cathepsin G mRNA levels and activities were elevated. Angiotensinogen mRNA is increased but not the angiotensinogen protein concentration. Renin mRNA level and activity were not altered by ac-LDL treatment. Blocking RAS by an AT1 receptor blocker, ACE inhibitors or a renin inhibitor decreased cholesteryl ester content of THP-1 cells after exposure to ac-LDL. To confirm that the Ang II effect on foam cell formation was not unique to ac-LDL, we treated the THP-1 macrophages with a renin inhibitor or an AT1 receptor inhibitor after exposure to oxidized LDL (ox-LDL). RAS blockade in ox-LDL-treated cells also abolished cholesteryl ester formation. To see how Ang II plays a role in foam cell formation we assessed the effect of RAS inhibitors on SR-A, the principal receptor for mediating ac-LDL entry into the cells and on acyl-CoA:cholesterol acyl transferase (ACAT-1), the enzyme responsible for intracellular cholesterol esterification. RAS blockade in both ac-LDL- and ox-LDL-treated cells decreased SR-A and ACAT-1 protein levels. Cathepsin G partial deficiency on an Apoe-/- background did not change Ang II levels in peritoneal or bone marrow-derived macrophage cell lysates or media. This deficiency also did not affect immunoreactive angiotensin peptide levels in atherosclerotic lesions. After 8 weeks on a high fat diet Ctsg+/-Apoe-/- mice were similar to Ctsg+/+Apoe-/- mice in terms of lesion size and serum cholesterol levels but the Ctsg+/+Apoe-/- mice had more advanced lesions with more collagen and smooth muscle cells and fewer macrophages. Moreover, Ctsg+/+Apoe-/- mice had more apoptotic cells than their Ctsg+/-Apoe-/- littermates. Overall, our findings indicate that Ang II is increased in foam cells and this endogenous Ang II is involved in cholesteryl ester formation, possibly by regulating the levels of ACAT-1 and SR-A. We did not find any role for cathepsin G in generation of Ang II in mice but cathepsin G does, nevertheless, promote the progression of atherosclerotic lesions to a more advanced stage.
34

MEMORY AND DEFAULT NETWORK ACTIVATION AS A FUNCTION OF APOE GENOTYPE

Elam, Kit 01 December 2010 (has links)
The main purpose of this dissertation project was to assess the behavioral and neural correlates of Episodic Memory as a function of the APOE genotype in a healthy young adult sample. To accomplish this, 98 subjects completed behavioral tasks assessing visual memory, working memory, episodic memory, and attention. Subjects also completed questionnaires evaluating IQ, years of education, drug use, personality, and emotional traits. These subjects were also genotyped for the APOE gene, resulting in 29 APOE-ε4 carriers (subjects who had at least one ε4 allele) and 69 Non APOE-ε4 carriers (having no ε4 alleles). No differences were found between genotypic groups on any demographic characteristics, behavioral measures, or personality traits. From this larger pool of 98 subjects, a subset of 22 subjects (10 APOE-ε4, 12 Non APOE-ε4) completed additional behavioral tasks while undergoing functional magnetic resonance imaging. While being scanned, subjects were asked to learn word pairs during an encoding phase, make metamemory evaluations on their ability to later remember each word pair during a judgment of learning (JOL) task, and try to discriminate between original and recombined word pairs during a final recognition phase. Interspersed between these tasks was a rest task meant to elicit activity within the Default Network. No differences in memory or metamemory performance were found on the behavioral tasks administered during imaging based on genotype. In contrast, marked differences in brain activation were found between APOE-ε4 carriers and Non APOE-ε4 carriers across the various imaging tasks. During encoding, APOE-ε4 carriers were found to have greater activation than Non APOE-ε4 carriers in the dorsal anterior portion of the left superior temporal gyrus, cingulate gyrus, and anterior middle frontal gyrus. This same pattern - greater APOE-ε4 carrier activation as compared to Non APOE-ε4 carriers - was present in the parahippocampal gyrus and posterior middle temporal gyrus during the judgment of learning metamemory task. During the recognition task, greater activation was found for Non APOE-ε4 carriers versus APOE-ε4 carriers in the left parahippocampal gyrus, SPL, and right anterior superior frontal gyrus. During the rest task, greater activation was seen in APOE-ε4 carriers versus Non APOE-ε4 carriers in the left inferior frontal gyrus, whereas the converse comparison resulted in medial anterior cingulate activation. The lack of behavioral differences suggests that in a healthy young adult sample, as was used in the present study, there are not yet detectable behavioral differences as a function of APOE genotype. The greater neural activity seen in APOE-ε4 carriers during the encoding and judgment of learning tasks is likely to reflect neural compensation: young adult APOE-ε4 carriers compensate for declines in cognitive efficiency with greater neural activity such that this greater neural activity improves behavioral performance, particularly in memory domains (Buckner, Andrews-Hanna, & Schacter, 2008; Han & Bondi, 2008; Levy et al., 2004; Trivedi et al., 2008). The relatively lower levels of activation in APOE-ε4 carriers during the recognition task may reflect stronger memory traces for studied items as a result of greater frontal and medial temporal lobe activity during the encoding and judgment of learning tasks in the APOE-ε4 carriers (Kirwan, Wixted, & Squire, 2008; Mondadoori et al., 2007; Squire, Wixted, & Clark, 2007). In the present sample, a lack of behavioral differences accompanied by neural disparity may signal the precursors of Alzheimer's disease, highlighting the progressive deteriorating influence of the APOE-ε4 allele. The aberrant pattern of default network activity seen in APOE-ε4 carriers underlies this influence as this genotype is proposed to preferentially contribute to the causes of Alzheimer's disease in areas common to the Default Network and Episodic Memory (Buckner et al., 2008). The present results strengthen previous findings illustrating a connection between the brain activity underlying memory processes, the default network, and the APOE genotype.
35

Comparison of ApoE-related brain connectivity differences in EMCI and normal aging populations: an fMRI study

McKenna, Faye 12 March 2016 (has links)
In this study, we used resting-state functional magnetic resonance imaging (fMRI) scans from subjects with early mild cognitive impairment (EMCI) and control subjects to study functional network connectivity. The scans were acquired by the Alzheimer's Disease Neuroscience Initiative (ADNI). We used genetic data from the ADNI database to further subdivide the EMCI and control groups into genotype groups with or without the ApoE4 allele. ROI-to-ROI resting-state functional connectivity was measured using Freesurfer and the Functional Connectivity Toolbox for Matlab (CONN). In our analysis, we compared whole-brain ROI connectivity strength and ROI-to-ROI functional network connectivity strength between EMCI, control and genotype subject groups. We found that the ROI network properties were disrupted in EMCI and ApoE4-containing groups. Notably, we show that (1) EMCI disrupts functional connectivity strength in many areas; (2) the ApoE4 allele disrupts functional connectivity strength in similar areas to EMCI; and (3) the differences in functional connectivity between groups shows a multifactor contribution to functional network dysfunction along the trajectory leading to dementia.
36

Role of Cathepsin G in Atherosclerosis

Rafatian, Naimeh January 2013 (has links)
Angiotensin II (Ang II) is an important modulator for development of atherosclerosis from early stage foam cell formation to advanced stage plaque rupture. Recently, the importance of locally generated Ang II, especially in macrophages, has become more evident. Generation of Ang II by several enzymes other than ACE and renin has been shown mainly in vitro. Cathepsin G is one these enzymes which is expressed in neutrophils and macrophages. Macrophages are one of the primary and crucial cells in atherosclerotic lesions which become lipid-laden foam cells through lipoprotein uptake. We hypothesized that activation of nuclear factors in foam cells increases Ang II by modulation of the renin angiotensin system (RAS) genes and cathepsin G. We also hypothesized that cathepsin G, through its Ang II generating activity and its other catalytic functions, promotes atherosclerosis. The present study assessed the Ang I and II levels and expression of the RAS genes in THP-1 cells, a human acute monocytic leukemia cell line, and in peritoneal and bone marrow-derived macrophages after exposure to acetylated LDL (ac-LDL). I also evaluated how RAS blockade would affect foam cell formation in THP-1 cells. In parallel, I assessed the role of cathepsin G in Ang II generation and in the progression of atherosclerosis in cathepsin G heterozygous knockout mice on an Apoe-/- background (Ctsg+/-Apoe-/- mice). Ac-LDL treatment increased Ang I and Ang II levels in cell lysates and media from THP-1 cells but not in peritoneal or bone marrow-derived macrophages from wild type C57BL/6 mice. In ac-LDL-treated THP-1 cells, ACE and cathepsin G mRNA levels and activities were elevated. Angiotensinogen mRNA is increased but not the angiotensinogen protein concentration. Renin mRNA level and activity were not altered by ac-LDL treatment. Blocking RAS by an AT1 receptor blocker, ACE inhibitors or a renin inhibitor decreased cholesteryl ester content of THP-1 cells after exposure to ac-LDL. To confirm that the Ang II effect on foam cell formation was not unique to ac-LDL, we treated the THP-1 macrophages with a renin inhibitor or an AT1 receptor inhibitor after exposure to oxidized LDL (ox-LDL). RAS blockade in ox-LDL-treated cells also abolished cholesteryl ester formation. To see how Ang II plays a role in foam cell formation we assessed the effect of RAS inhibitors on SR-A, the principal receptor for mediating ac-LDL entry into the cells and on acyl-CoA:cholesterol acyl transferase (ACAT-1), the enzyme responsible for intracellular cholesterol esterification. RAS blockade in both ac-LDL- and ox-LDL-treated cells decreased SR-A and ACAT-1 protein levels. Cathepsin G partial deficiency on an Apoe-/- background did not change Ang II levels in peritoneal or bone marrow-derived macrophage cell lysates or media. This deficiency also did not affect immunoreactive angiotensin peptide levels in atherosclerotic lesions. After 8 weeks on a high fat diet Ctsg+/-Apoe-/- mice were similar to Ctsg+/+Apoe-/- mice in terms of lesion size and serum cholesterol levels but the Ctsg+/+Apoe-/- mice had more advanced lesions with more collagen and smooth muscle cells and fewer macrophages. Moreover, Ctsg+/+Apoe-/- mice had more apoptotic cells than their Ctsg+/-Apoe-/- littermates. Overall, our findings indicate that Ang II is increased in foam cells and this endogenous Ang II is involved in cholesteryl ester formation, possibly by regulating the levels of ACAT-1 and SR-A. We did not find any role for cathepsin G in generation of Ang II in mice but cathepsin G does, nevertheless, promote the progression of atherosclerotic lesions to a more advanced stage.
37

Implication des phagocytes mononuclées dans l'évolution de la plaque d'athérosclérose et relation avec l'homéostasie du cholestérol et des lipoprotéines / Involvement of mononuclear phagocyte in the progression of atherosclerosis, and relationship with cholesterol and lipoprotein homeostasis

Bouchareychas, Laura 18 September 2014 (has links)
L'athérosclérose est un processus physiopathologique chronique impliqué dans la majorité des maladies cardio-vasculaires. Le développement des lésions d'athérosclérose est caractérisé par l'accumulation de lipides extra et intracellulaires dans la paroi artérielle à l'origine d'une forte réponse inflammatoire impliquant notamment les macrophages. Les macrophages sont considérés comme des acteurs clés dans le développement des plaques d'athérosclérose. En effet, de par leur capacité à métaboliser le cholestérol (captation, stockage, efflux), à réguler l'inflammation et à phagocyter les cellules apoptotiques, ils exercent des fonctions pro et/ou anti-athèrogènes qui peuvent être modulées à des fins thérapeutiques. Dans cette perspective, nous avons évalué le pouvoir thérapeutique des " macrophages protégés de l'apoptose " sur la progression des lésions d'athérosclérose constituées. Nous avons démontré que l'augmentation de la survie des macrophages permet de ralentir la progression des lésions, de stabiliser les lésions et de diminuer la cholestérolémie. Ces effets athéro-protecteurs sont attribués à l'augmentation des cellules de Kupffer et des monocytes Ly-6Clow en partie par leur capacité à produire de l'apolipoprotéine E. Nous montrons également que les cellules de Kupffer participent à la clairance des lipoprotéines pro-athérogènes. L'augmentation du pool d'apoE ainsi que l'augmentation des cellules de Kupffer permettent de diminuer la cholestérolémie et ainsi de diminuer la progression des lésions. / Atherosclerosis represents a chronic pathophysiological process implicated in the majority of cardiovascular diseases. The development of atherosclerotic lesions is characterized by an accumulation of extra and intracellular lipids in the arterial wall at the origin of a strong inflammatory response involving macrophages.Macrophages are considered key actors in the development of atherosclerotic plaques. Indeed, because of their ability to metabolize cholesterol (capture, storage, efflux), to regulate inflammation and to phagocyte apoptotic cells, they exert pro and/or anti-atherogenic functions that may be modulated therapeutically. In this context, we evaluated the therapeutic potential of macrophages protected against apoptosis, on the progression of established atherosclerotic lesions.We have demonstrated that increased macrophage survival can slow down the progression of established lesions, stabilize lesion and reduce cholesterol levels. These athero-protective effects are attributed to the increase in Kupffer cells and Ly-6Clow monocytes partly due to their ability to produce apolipoprotein E. We also show that Kupffer cells are involved in the clearance of pro-atherogenic lipoproteins. The increase in ApoE pool and in Kupffer cells reduces cholesterol levels and thus lesion progression.
38

Clinical study on apolipoprotein E distribution, metabolism and glycation

Liu, Yifen January 2015 (has links)
Apolipoproteins have important roles in the transport of lipids and the regulation of lipoprotein metabolism as cofactors for enzymes and ligands for receptor-binding. Their function and metabolism are closely related to the development of many diseases. This dissertation describes the investigation of the distribution and metabolism of apoE and glycated apoE in diabetes, obesity and hyperlipidaemia in comparison with healthy people. In order to carry out the research, I developed several robust laboratory methods and techniques for the isolation and measurement of apoE and glycated apoE. These included (1) a modified in-house ultracentrifugation for isolation of lipoprotein fractions (2) high sensitivity sandwich enzyme-linked immunosorbent assay (ELISA) for apoE and (3) m-aminophenylboronate affinity chromatography for the separation of glycated and non- glycated apoE.In healthy people the apoE concentration in different lipoprotein fractions is influenced by age, gender and apoE genotype. The effect of atorvastatin on serum apoE concentration in patients with type 2 diabetes with nephropathy was dependent on the dose of atorvastatin and apoE genotype and was strongly correlated with the reduction in triglycerides (TG) in very low density lipoprotein (VLDL).The effect of bariatric surgery on obese patients with and without diabetes demonstrated that after bariatric surgery, VLDL-apoE increased and apoE in low density lipoprotein (LDL), high density lipoprotein (HDL) and d>1.21g/ml fractions decreased; both glycated LDL-apoE and glycated HDL-apoE decreased. Total apoE and glycated apoE concentrations in plasma decreased to levels comparable to those of healthy controls. However, the distribution within the lipoprotein fractions was very different. The effect of niacin/laropiprant (LRPT) on lipoproteins in hyperlipidaemia patients was assessed in a blind crossover trial. Niacin/LRPT slightly decreased VLDL-apoE and LDL-apoE. It had no effect on apoE in HDL. Glycated apoE did not change in hyperlipidaemia. These results show that, compared with healthy people, the apoE distribution in obese and hyperlipidaemia patients is abnormal despite no change in total apoE concentration in some cases. The results also demonstrate that glycated apoE originates preferentially from VLDL. Various mechanisms for these results and relationships with other lipids are discussed. Furthermore, I suggest several potential directions, especially in vitro, for further research on apoE function and metabolism.
39

Modulation of Atherosclerosis by Myeloid-derived Human apoE Isoforms or by Mutation of the Proximal Dileucine Motif of LRP1

Igel, Emily M. 05 October 2021 (has links)
No description available.
40

THE IMPACT OF APOLIPOPROTEIN E ON CHOLESTEROL METABOLISM AND ALZHEIMER'S DISEASE

Mann, Karen M. 14 July 2005 (has links)
No description available.

Page generated in 0.0412 seconds