111 |
Effect of Feeding a Viable Yeast Culture With or Without Aspergillus Oryzae on Milk Production, Apparent Nutrient Digestibility, Ruminal Fermentation and Nutrient Degradability in Holstein CowsKim, Daeyoon 01 May 1992 (has links)
Twenty-four early to midlactation Holstein cows were allocated to one of three treatments. Treatments consisted of: 1) basal ration plus 60 g wheat bran per day per head (control); 2) basal ration plus 57 g yeast culture per day per head; 3) basal ration plus 57 g yeast culture plus 3 g Aspergillus oryzae per day per head. Feed intake and milk yield were recoreded daily and milk composition and body weights were recorded weekly. Feed and fecal samples were recorded weekly. Feed and fecal samples were collected to determine apparent nutrient digestibility. No statistical difference was observed in milk yield among treatments. Percent fat, protein, and solid non fat of milk samples for the control fed group was significantly higher than the other treatment groups. Apparent crude protein, acid detergent fiber, and neutral detergent fiber digestibilities for cows fed the fungal culture treatments were significantly higher.
Six rumen-fistulated Holstein cows were randomly assigned to one of three treatments in a 3x3 replicated Latin square design. Rumen pH was significantly lower for cows fed treatment two. Total volatile fatty acid and ammonia nitrogen concentration were higher for cows fed treatment two.
Three rumen-fistulated Holstein cows were assigned one of three treatments in a 3x3 Latin square design for an in situ study. Approximately 15 g of grass hay, low quality alfalfa, and high quality alfalfa were sealed in nylon bags and put into the rumen. Samples were analyzed for dry matter, acid detergent fiber, neutral detergent fiber, and crude protein. Regardless of substrate used, dry matter disappearance was lower for control. Regardless of treatment ration fed, high quality alfalfa as a substrate was significantly higher in dry matter disappearance.
|
112 |
Multiscale Analysis of Mechanical and Transport Properties in Shale Gas ReservoirsHatami, Mohammad 01 June 2021 (has links)
No description available.
|
113 |
Seasonal and Environmental Influences on Soil O2 and CO2 Concentrations in Abandoned Mine TailingsReinhardt, Alyssa 26 July 2023 (has links)
No description available.
|
114 |
Dynamic Contrast-Enhanced MRI and Diffusion-Weighted MRI for the Diagnosis of Bladder CancerNguyen, Huyen Thanh 12 July 2013 (has links)
No description available.
|
115 |
Adaptation of the Mechanical Properties of Subchondral Bone in the Temporomandibular Joint Due to Altered LoadingZaylor, William 26 September 2013 (has links)
No description available.
|
116 |
Evaluation of In-Service Residential Water Meters: Analysis of Registration Error and Metering Infrastructure UpgradesMantilla Pena, Carlos Fernando 22 January 2020 (has links)
The American Water Works Association (AWWA) and the International Water Association (IWA) have designated the volume of water not registered by water meters as a form of "apparent loss" in a distribution system. The term apparent is given because this volume is not technically a water loss, as is the case of wasted water from real leaks in the distribution system. Large volumes of apparent losses hurt the revenue of utilities that rely on water metering to bill their customers. This is critical to utilities given that billed consumption is often the main source of income to provide adequate service. This form of apparent losses is a challenge to water management, particularly, in the case of significant drought because of the uncertainty about the real volume of water consumed. Although the impact of apparent losses from a single residential service connection is not as significant compared to an industrial meter with low accuracy, the cumulative effect of apparent losses across residential users can be very significant.
Until the early 2000's water utilities in the U.S. relied on mechanical water meters to measure residential water use. Since then, electronic meters with higher accuracy at low flow rates have been developed. Data collection from meters has also evolved as well, from the manual reading by an operator, to drive-by systems and most recently to remote readings using a network of transmitters/receivers (i.e., advanced metering infrastructure or AMI).
An expectation of this dissertation is that it will help water utilities to have a better idea of the volume of apparent losses due to metering inaccuracy (i.e., registration error) and provide insights into the effects of installing AMI systems to residential metered water (MW). To achieve this goal, two main objectives are fulfilled 1) to expand on the knowledge of registration error (RE) in mechanical nutating-disc (ND) meters used to monitor residential consumption, and 2) to evaluate the impact of metering infrastructure upgrades on the volume of metered water (MW) from residential service connections. This dissertation follows the manuscript format with three journal articles constituting the main chapters after a general introduction characterizing the issues in Chapter 1.
Chapter 2 is an experimental study that evaluates the influence of service time (ST) and volumetric throughput (TP) on the accuracy of ND meters within the recommended flow rates set by the U.S. water industry for meters with an internal diameter of ⅝-in. (15-mm). Over 300 meters removed from service were tested for accuracy. Key findings of this study are 1) ND meters that have been in service over 25 years have a greater likelihood of poor accuracy at the minimum recommended flow rate (Q^min) of 0.25 gallons per minute (gpm) (57 liters per hour (L/h)) and 0.5 gpm (114 L/h) independent of TP, and 2) comparison with data from accelerated laboratory testing showed that simulated use may not necessarily reflect the actual performance of ND meters in service, particularly, at 0.25 and 0.5 gpm.
Chapter 3 is an experimental study that investigates REs of ND meters below the minimum recommended flow rate (Q^min = 0.25 gpm), particularly, at ½, ¼ and ⅛ of Q^min. Over 100 meters removed from service were tested in this study. Key findings of this study are 1) confirmed how performance decreases with reducing flow rate below Q^min, 2) of the variables considered, TP was found to be a better indicator of RE at Q_(1/8)^min up to an approximate meter reading of 0.66 MG (2.5 ML) compared to ST for 10 ≤ ST ≤ 24 years, with minimal influence at Q_(1/4)^min and none at Q_(1/2)^min, and 3) a strong linear relationship was found between RE at Q_(1/2)^min and RE at Q^min independent of TP or ST.
Chapter 4 is a study that evaluates the extent to which the implementation of a new AMI system combined with a system-wide installation of new ND meters impacted the volume of MW from residential service connections of a 22,000-person municipality in southwest Virginia. Time-series analysis techniques were employed to evaluate changes in the trend of bimonthly MW and median daily MW over a six-year period. Key findings of this study are 1) the AMI system improved the accountability of MW for the utility, 2) despite an ongoing downward annual trend in MW, average bimonthly MW mildly increased after the AMI system was fully operational, and 3) annual MW increased by 2.2% in the 12-month period immediately following the metering infrastructure upgrade. / Doctor of Philosophy / An expectation of this dissertation is that it will help water utilities to have a better idea of the volume of water not being measured by residential water meters in their system (i.e., registration error) and provide insights into the effects of replacing water meters and installing automatic data collections systems (i.e., metering infrastructure upgrades) to improve accounting of water and revenue. To achieve these goals three studies were conducted. In the first two studies, over 400 nutating-disc (ND) water meters, a type of mechanical meter used to measure water, were removed from service and tested to evaluate the percent of water not measured at different ranges of flow (volume per time), and to determine if metering errors changed depending on the service time (ST) of the meter or total volume of water that had gone through (TP) it while in service. The third study consisted in the review of water consumption data from a municipality in southwest Virginia that underwent a metering infrastructure upgrade consisting of replacing all their water meters and installing an advanced metering infrastructure (AMI) system (i.e., automatic meter reading).
Key findings discussed in this dissertation are 1) confirmed how performance of ND meters decreases with reducing flow rate below 0.25 gallons per minute (gpm). This is the minimum flow rate (Q^min) recommended by the U.S. water industry for accuracy testing of mechanical meters. 2) ND meters that have been in service over 25 years have a greater likelihood of poor accuracy at Q^min and 0.5 gpm independent of TP. 3) The relative influence of TP and ST on accuracy varied with the test flow rate. 4) Comparison with data from accelerated laboratory testing showed that simulated use may not necessarily reflect the actual performance of ND meters in service, particularly, at 0.25 and 0.5 gpm. 5) The AMI system improved the accountability of water for the utility. 6) Despite an ongoing downward annual trend in metered water (MW), average bimonthly MW mildly increased after the AMI system was fully operational. And 7) annual MW increased by 2.2% in the 12-month period immediately following the metering infrastructure upgrade.
|
117 |
A random forest model for predicting soil properties using Landsat 9 bare soil imagesTokeshi Muller, Ivo 13 August 2024 (has links) (PDF)
Digital soil mapping (DSM) provides a cost-effective approach for characterizing the spatial variation in soil properties which contributes to inconsistent productivity. This study utilized Random Forest (RF) models to facilitate DSM of apparent soil electrical conductivity (ECa), estimated cation exchange capacity (CEC), and soil organic matter (SOM) in agricultural fields across the Lower Mississippi Alluvial Valley. The RF models were trained and tested using in situ collected ECa, CEC, and SOM data, paired with a bare soil composite of Landsat 9 imagery. Field data and imagery were collected during the study period of 2019 through 2023. Models ranged from fair to moderate in accuracy (R2 from 0.27 to 0.68). The contrasting performance between CEC/SOM and ECa models is likely due to the dynamic nature of soil properties. Accordingly, models could have benefitted from covariates such as soil moisture, topography, and climatic factors, or higher spectral resolution imagery, such as hyperspectral.
|
118 |
Parameterization, regionalization and radiative transfer coherence of optical measurements acquired in the St-Lawrence ecosystem / Propriétés optiques intrinsèques et apparentes des eaux du golfe et de l'estuaire du Saint-Laurent : concordance optique, paramétrisation et variabilité spatio-temporelleCizmeli, Servet Ahmet January 2008 (has links)
In-water biogeochemical constituents and bio-optical properties of the St-Lawrence Gulf and Estuary were monitored during 5 cruises conducted between 1997-2001 accross different seasons. Measured inherent optical properties (IOPs) included vertical profiles of the absorption and attenuation coefficients and the volume scattering function as well as absorption by particles, non-algal particles, phytoplankton and coloured dissolved organic matter (CDOM). Apparent Optical parameters (AOPs) included vertical profiles of the upwelling radiance and downwelling irradiance. The spectral shape of the major IOPs like absorption by phytoplankton, CDOM and non-algal particles as well as the particulate backscattering were parameterized using conventional models and adaptations of conventional models. Descriptive statistics of each variable in the collected dataset were analysed and compared with previous findings in the literature. The optical coherence of the measurements was verified using a radiative transfer closure approach. A complete set of IOP cross-sections for optically significant biogeochemical variables were generated. The magnitude and the spatial, temporal and spectral variation exhibited by the optically significant inwater biogeochemical constituents as well as the bio-optical parameters was consistent with our current knowledge of the ecosystem. The variation of the bio-optical parameters throughout the seasons was also coherent with our expectations. All the measured and derived parameters were found to vary within the ranges reported in the literature. Evidence was presented wherein the Gulf waters, which are usually considered as case I waters could also behave like case II waters. Moreover, spectral signatures exhibited by the IOPs and AOPs were coherent with the variation detected in the concentrations of the measured (optically significant) constituents. The extracted IOP cross-sections were consistent with the results of similar studies previously performed and could eventually be used in the estimation of the biogeochemical constituent concentrations given the related component IOPs. First-order radiative transfer closure was achieved; this underscored the validity of our experimental dataset based on considerations of higher level, integrative, physics. We argue that the current data collection campaign succeeded as a comprehensive framework for describing the behavior of the St-Lawrence bio-optical provinces within the context of remote sensing objectives. This bio-optical dataset should provide the basis for the development of a rigorous, satellite-based, remote sensing algorithm for the retrieval of near surface chlorophyll, fine-tuned to the local characteristics of the St-Lawrence system.
|
119 |
Magnetic resonance microscopy of Aplysia neurons : studying neurotransmitter-modulated transport and response to stressJelescu, Ileana O. 02 October 2013 (has links) (PDF)
Recent progress in magnetic resonance imaging (MRI) has opened the way for micron-scale resolution, and thus for imaging biological cells. In this thesis work, we performed magnetic resonance microscopy (MRM) on the nervous system of Aplysia californica, a model particularly suited due to its simplicity and to its very large neuronal cell bodies, in the aim of studying cellular-scale processes with various MR contrasts. Experiments were performed on a 17.2 Tesla horizontal magnet, at resolutions down to 25 µm isotropic. Initial work consisted in conceiving and building radiofrequency microcoils adapted to the size of single neurons and ganglia. The first major part of the project consisted in using the manganese ion (Mn2+) as neural tract tracer in the buccal ganglia of Aplysia. Manganese is an MR contrast agent that enters neurons via voltage-gated calcium channels. We performed the mapping of axonal projections from motor neurons into the peripheral nerves of the buccal ganglia. We also confirmed the existence of active Mn2+ transport inside the neural network upon activation with the neurotransmitter dopamine. In the second major part of the project, we tested the potential of two diffusion MRI sequences for microscopy. On the one hand, we explored a very original mechanism for diffusion weighting, DESIRE (Diffusion Enhancement of SIgnal and REsolution), particularly suited for small samples. The two-dimensional DESIRE sequence was implemented and successfully tested on phantoms. The measured enhancement was consistent with theoretical predictions. Using this sequence to produce diffusion weighted images with an unprecedented contrast in biological tissue remains a challenge. On the other hand, a more "standard" sequence was implemented to measure the apparent diffusion coefficient (ADC) in nervous tissue with MRM. This sequence was a three-dimensional DP-FISP (Diffusion Prepared Fast Imaging with Steady-state free Precession), which met criteria for high resolution in a short acquisition time, with minimal artifacts. Using this sequence, we studied the changes in water ADC at different scales in the nervous system, triggered by cellular challenges. The challenges were hypotonic shock or exposure to ouabain. ADC measurements were performed on single isolated neuronal bodies and on ganglia tissue, before and after challenge. Both types of stress produced an ADC increase inside the cell and an ADC decrease at tissue level. The results favor the hypothesis that the increase in membrane surface area associated with cell swelling is responsible for the decrease of water ADC in tissue, typically measured in ischemia or other conditions associated with cell swelling.
|
120 |
Gazéification de charbon de granules de bois : comportement thermochimique et mécanique d’un lit fixe continu / Gasification of wood pellets char : thermochemical and textural properties of a continuous fixed bedTeixeira, Gabriel 16 March 2012 (has links)
La gazéification étagée de biomasse permet la production d'un gaz de synthèse propre, facilement valorisable en énergie électrique et/ou thermique. Néanmoins, l'optimisation de ces procédés en termes de rendement de conversion et de souplesse vis-à-vis de la nature de la biomasse constitue un enjeu industriel fort. Dans cette thèse, nous avons étudié spécifiquement une étape clef du procédé : la gazéification du charbon en lit fixe continu. La granulation est la solution proposée pour valoriser des biomasses de faible granulométrie ou densité. Ainsi les comportements de deux charbons de bois - issus de plaquettes forestières et de granulés - ont été étudiés en parallèle à partir d'outils expérimentaux et numériques.Dans un premier temps des expérimentations ont été menées sur un réacteur pilote, très largement instrumenté, reproduisant cette zone du procédé. Les profils mesurés de température, de composition des gaz, de densité du lit et de vitesse des particules constituent une base de données unique, révélatrice du comportement du réacteur. Nous avons ainsi pu localiser en haut du lit une zone très réactive d’épaisseur inférieure à 5 cm, ou encore un tassement significatif du lit entrainant une chute de la vitesse des particules dans un rapport de 8. La gazéification de charbons de granulés conduit aux mêmes taux de conversion finale et compositions du gaz de synthèse que celle de charbons issus de plaquettes forestières. Dans un deuxième temps, nous avons développé un modèle numérique de la zone d'étude, basé sur la résolution des équations de conservation couplées aux cinétiques des réactions, à l'aide du logiciel COMSOL. La prise en compte du tassement du lit, et de la cinétique apparente des réactions hétérogènes à l'échelle particule dans les termes sources réactionnels, sont les deux spécificités du modèle. Ce dernier permet de reproduire de manière satisfaisante les profils des grandeurs physiques mesurés pour diverses conditions opératoires et pour les deux charbons de l'étude. L'exploitation de ce modèle apporte des informations nouvelles et complémentaires de l’expérience ; il permettra à terme d'optimiser le procédé industriel / Multi-stage gasification of biomass leads to the production of a clean synthetic gas that can easily be used for electrical and/or thermal energy. However, optimization of these processes in terms of conversion yield and flexibility regarding the type of biomass is a major industrial challenge. To that end, a key stage of the process was specifically studied in this thesis: char gasification in a continuous fixed bed reactor. Granulation is the solution proposed for making use of low density or small particle-size biomasses. The performance of two wood chars – made from wood chips and pellets – was studied at the same time using experimental and numerical tools. Experiments were first conducted in a very highly instrumented pilot reactor, reproducing this zone of the process. The profiles measured, namely temperature, gas composition, bed density and particle velocity formed a unique database revealing reactor performance. A very reactive zone under 5 cm thick was thus located at the top of the bed, or even significant compaction leading to a drop in particle velocity, in a ratio of 8. Granular char gasification led to the same final conversion rates and synthetic gas compositions as for the chars derived from wood chips. A numerical model of the study zone was then developed, based on solving conversion equations combined with reaction kinetics, using COMSOL software. Taking into account bed compaction and the apparent kinetics of the heterogeneous reactions on a particle scale in the reaction source terms were two specificities of the model. It enabled satisfactory reproduction of the profiles of the physical magnitudes measured, for various operating conditions and for the two charsstudied. Use of this model is already providing new and complementary experimental information; it will eventually make it possible to optimize the industrial process
|
Page generated in 0.0538 seconds