• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 63
  • Tagged with
  • 126
  • 126
  • 125
  • 125
  • 122
  • 19
  • 19
  • 19
  • 19
  • 19
  • 18
  • 18
  • 16
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

[en] A CRITICAL VIEW ON THE INTERPRETABILITY OF MACHINE LEARNING MODELS / [pt] UMA VISÃO CRÍTICA SOBRE A INTERPRETABILIDADE DE MODELOS DE APRENDIZADO DE MÁQUINA

JORGE LUIZ CATALDO FALBO SANTO 29 July 2019 (has links)
[pt] À medida que os modelos de aprendizado de máquina penetram áreas críticas como medicina, sistema de justiça criminal e mercados financeiros, sua opacidade, que impede que as pessoas interpretem a maioria deles, se tornou um problema a ser resolvido. Neste trabalho, apresentamos uma nova taxonomia para classificar qualquer método, abordagem ou estratégia para lidar com o problema da interpretabilidade de modelos de aprendizado de máquina. A taxonomia proposta que preenche uma lacuna existente nas estruturas de taxonomia atuais em relação à percepção subjetiva de diferentes intérpretes sobre um mesmo modelo. Para avaliar a taxonomia proposta, classificamos as contribuições de artigos científicos relevantes da área. / [en] As machine learning models penetrate critical areas like medicine, the criminal justice system, and financial markets, their opacity, which hampers humans ability to interpret most of them, has become a problem to be solved. In this work, we present a new taxonomy to classify any method, approach or strategy to deal with the problem of interpretability of machine learning models. The proposed taxonomy fills a gap in the current taxonomy frameworks regarding the subjective perception of different interpreters about the same model. To evaluate the proposed taxonomy, we have classified the contributions of some relevant scientific articles in the area.
112

[pt] GERAÇÃO DE DESCRIÇÕES DE PRODUTOS A PARTIR DE AVALIAÇÕES DE USUÁRIOS USANDO UM LLM / [en] PRODUCT DESCRIPTION GENERATION FROM USER REVIEWS USING A LLM

BRUNO FREDERICO MACIEL GUTIERREZ 04 June 2024 (has links)
[pt] No contexto de comércio eletrônico, descrições de produtos exercem grande influência na experiência de compra. Descrições bem feitas devem idealmente informar um potencial consumidor sobre detalhes relevantes do produto, esclarecendo potenciais dúvidas e facilitando a compra. Gerar boas descrições, entretanto, é uma atividade custosa, que tradicionalmente exige esforço humano. Ao mesmo tempo, existe uma grande quantidade de produtos sendo lançados a cada dia. Nesse contexto, este trabalho apresenta uma nova metodologia para a geração automatizada de descrições de produtos, usando as avaliações deixadas por usuários como fonte de informações. O método proposto é composto por três etapas: (i) a extração de sentenças adequadas para uma descrição a partir das avaliações (ii) a seleção de sentenças dentre as candidatas (iii) a geração da descrição de produto a partir das sentenças selecionadas usando um Large Language Model (LLM) de forma zero-shot. Avaliamos a qualidade das descrições geradas pelo nosso método comparando-as com descrições de produto reais postadas pelos próprios anunciantes. Nessa avaliação, contamos com a colaboração de 30 avaliadores, e verificamos que nossas descrições são preferidas mais vezes do que as descrições originais, sendo consideradas mais informativas, legíveis e relevantes. Além disso, nessa mesma avaliação replicamos um método da literatura recente e executamos um teste estatístico comparando seus resultados com o nosso método, e dessa comparação verificamos que nosso método gera descrições mais informativas e preferidas no geral. / [en] In the context of e-commerce, product descriptions have a great influence on the shopping experience. Well-made descriptions should ideally inform a potential consumer about relevant product details, clarifying potential doubt sand facilitating the purchase. Generating good descriptions, however, is a costly activity, which traditionally requires human effort. At the same time, there are a large number of products being launched every day. In this context, this work presents a new methodology for the automated generation of product descriptions, using reviews left by users as a source of information. The proposed method consists of three steps: (i) the extraction of suitable sentences for a description from the reviews (ii) the selection of sentences among the candidates (iii) the generation of the product description from the selected sentences using a Large Language Model (LLM) in a zero-shot way. We evaluate the quality of descriptions generated by our method by comparing them to real product descriptions posted by sellers themselves. In this evaluation, we had the collaboration of 30 evaluators, and we verified that our descriptions are preferred more often than the original descriptions, being considered more informative, readable and relevant. Furthermore, in this same evaluation we replicated a method from recent literature and performed a statistical test comparing its results with our method, and from this comparison we verified that our method generates more informative and preferred descriptions overall.
113

[pt] ESTIMAÇÃO DA TENSÃO MECÂNICA USANDO ONDAS ULTRASSÔNICAS GUIADAS E MACHINE LEARNING / [en] MECHANICAL STRESS ESTIMATION USING GUIDED ULTRASONIC WAVES AND MACHINE LEARNING

CHRISTIAN DEYVI VILLARES HOLGUIN 11 July 2022 (has links)
[pt] Devido ao efeito acoustoelástico, as Ondas guiadas ultrassônicas (UGWs) têm sido usadas para estimar a tensão mecânica com baixo custo de forma não destrutiva. O Aprendizado de maquina (ML) tem sido aplicado para mapear formas complexas de ondas para estimar a tensão mecânica, embora aspectos importantes como precisão e consumo computacional não tenham sido explorados. Na literatura também não há muito trabalho sobre o uso do aprendizado não supervisionado para a rotulagem automática de amostras com diferentes estados de tensão. Portanto, esta tese apresenta duas abordagens: i) a abordagem supervisionada propõe uma metodologia de modelagem de dados que otimiza a precisão e a implementação computacional, para a estimação da tensão baseada em UGWs em tempo real e ii) a abordagem não supervisionada compara estruturas não supervisionadas para rotular um pequeno conjunto de dados de acordo com o estado de tensão. Para o primeiro, foram avaliados modelos de aprendizagem superficial e profunda com redução de dimensionalidade, estes modelos são criados e testados usando um procedimento de hold-out Monte-Carlo para avaliar sua robustez. Os resultados mostram que, utilizando modelos superficiais e Análise de componentes principais (PCA), foi obtida uma melhoria de precisão e no consumo de hardware em comparação com o estado da arte com modelos de redes neurais profundas. Para o segundo, métodos de redução de dimensionalidade: PCA e t-distributed stochastic neighbor embedding (t-SNE), são usados para extrair características de sinais UGWs. As características são usadas para agrupar as amostras em estados de baixa, média e alta tensão. Uma análise qualitativa e quantitativa dos resultados foi realizada, considerando a análise de métricas para agrupamento, o PCA realizou o melhor agrupamento, qualitativamente, mostrando menos sobreposição en grupos do que t-SNE. As duas abordagens utilizadas nesta tese, conseguiram extrair características significativas que ajudam tanto na estimativa quanto tanto na rotulagem de dados, contribuindo para a criação de modelos de ML mais eficientes e no problema de interpretação de UGWs. / [en] Due to the acoustoelastic effect, Ultrasonic Guided Waves (UGWs) have been used to estimate mechanical stress in a non-expensive and nondestructively fashion. Machine Learning (ML) has been applied to map complex waveforms to stress estimates, though important aspects, such as accuracy and hardware consumption, have not been explored. Previously in the literature, there are also not many works on the use of unsupervised learning for automatic labeling of samples with different stress states. Therefore, this thesis presents two approaches, (i) the supervised approach aims to propose a data modeling methodology that optimizes accuracy and computational implementation, for real-time ultrasonic based stress estimation and (ii) the unsupervised approach aims at comparing unsupervised frameworks to label a small dataset according to the stress state. For the former, shallow and deep learning models with dimensionality reduction were evaluated, these models are created and tested using a Monte-Carlo holdout procedure to evaluate their robustness under different stress conditions. The results show that, using shallow models and Principal Component Analysis (PCA), an accuracy improvement and hardware consumption as compared to the state of the art reported with deep neural network models were obtained. For the latter, dimensionality reduction methods: PCA and t-distributed stochastic neighbor embedding (t-SNE), are used to extract features from UGWs signals with different stress levels. The features are used to group the samples into low, medium and high stress states. A qualitative and quantitative analysis of the results was performed. Considering the analysis of metrics for clustering, PCA performed the best clustering, qualitatively, showing less overlapping of clusters than t-SNE. The two approaches used in this thesis, managed to extract meaningful features which helped in both estimation and stress labeling, contributing to the creation of more efficient ML models and in the problem of interpreting UGWs.
114

[en] DESIGN AND ACTIVATION OF A PNEUMATIC GECKO ROBOT WITH APPLICATION OF MACHINE LEARNING / [pt] PROJETO E ACIONAMENTO DE UM ROBÔ LAGARTIXA PNEUMÁTICO COM APLICAÇÃO DE APRENDIZADO COMPUTACIONAL

MATHEUS RODRIGUES GOEBEL 07 November 2022 (has links)
[pt] Este trabalho apresenta um projeto mecânico de um robô lagartixa pneumática, capaz de se locomover em superfícies inclinadas em relação ao solo, através apenas de atuadores lineares que utilizam o ar comprimido como fonte de energia. Como parte fundamental do projeto mecânico neste trabalho, um sistema de garra é desenvolvido gerando vácuo mecanicamente, para haver uma economia de consumo energético no robô em comparação com os acessórios comerciais geralmente utilizados para esta tarefa de fixação. Com o protótipo de conceito fabricado e montado, o mesmo é submetido a uma bateria de testes com o intuito de posteriormente aplicar os dados obtidos em uma rede neural artificial, visando o aprendizado computacional dos movimentos do robô e, assim, sua otimização de velocidade em determinada sequência de movimentação. Após o treinamento desta rede neural, o protótipo é submetido a novos experimentos para verificar a eficiência do treinamento realizado e qual o impacto real obtido no robô. Finalmente, com a utilização de um sistema de câmeras, os deslocamentos do robô em diversas situações distintas são rastreados, visando gerar gráficos comparativos e analisar a repetibilidade e confiabilidade do sistema. / [en] This work presents the mechanical design of a pneumatic gecko robot, capable of moving on inclined surfaces with respect to the ground, using only linear actuators with compressed air as a source of energy. As a fundamental part of the mechanical design in this work, a claw system is developed by generating vacuum mechanically, significantly reducing the energy consumption of the robot when compared to commercial accessories generally used for this clamping task. With the concept prototype manufactured and assembled, a series of tests are conducted to later apply the collected data in an artificial neural network. This network allows the computational learning of the robot movements, and thus its speed optimization for a certain defined gait. After training this neural network, the prototype is submitted to new experiments to verify the efficiency of the training performed and the real impact obtained on the robot. Furthermore, with the use of a camera system, the movements of the robot along several different situations are tracked, generating comparative graphs to analyze the repeatability and reliability of the system.
115

[en] ON MACHINE LEARNING TECHNIQUES TOWARD PATH LOSS MODELING IN 5G AND BEYOND WIRELESS SYSTEMS / [pt] SOBRE TÉCNICAS DE APRENDIZADO DE MÁQUINA EM DIREÇÃO À MODELAGEM DE PERDA DE PROPAGAÇÃO EM SISTEMAS SEM FIO 5G E ALÉM

YOIZ ELEDUVITH NUNEZ RUIZ 09 November 2023 (has links)
[pt] A perda de percurso (PL) é um parâmetro essencial em modelos de propagação e crucial na determinação da área de cobertura de sistemas móveis. Osmétodos de aprendizado de máquina (ML) tornaram-se ferramentas promissoras para a previsão de propagação de rádio. No entanto, ainda existem algunsdesafios para sua implantação completa, relacionados à seleção das entradasmais significativas do modelo, à compreensão de suas contribuições para asprevisões do modelo e à avaliação adicional da capacidade de generalizaçãopara amostras desconhecidas. Esta tese tem como objetivo projetar modelosde PL baseados em ML otimizados para diferentes aplicações das tecnologias5G e além. Essas aplicações abrangem links de ondas milimétricas (mmWave)para ambientes indoor e outdoor na faixa de frequência de 26,5 a 40 GHz,cobertura de macrocélulas no espectro sub-6 GHz e comunicações veicularesusando campanhas de medições desenvolvidas em CETUC, Rio de Janeiro,Brazil. Vários algoritmos de ML são explorados, como redes neurais artificiais(ANN), regressão de vetor de suporte (SVR), floresta aleatória (RF) e aumentode árvore de gradiente (GTB). Além disso, estendemos dois modelos empíricospara mmWave com previsão de PL melhorada. Propomos uma metodologiapara seleção robusta de modelos de ML e uma metodologia para selecionar ospreditores mais adequados para as máquinas consideradas com base na melhoria de desempenho e na interpretabilidade do modelo. Além disso, para o canalveículo-veículo (V2V), uma técnica de rede neural convolucional (CNN) também é proposta usando uma abordagem de aprendizado por transferência paralidar com conjuntos de dados pequenos. Os testes de generalização propostosmostram a capacidade dos modelos de ML de aprender o padrão entre as entradas do modelo e a PL, mesmo em ambientes e cenários mais desafiadoresde amostras desconhecidas. / [en] Path loss (PL) is an essential parameter in propagation models and critical in determining mobile systems coverage area. Machine learning (ML) methods have become promising tools for radio propagation prediction. However, there are still some challenges for its full deployment, concerning to selection of the most significant model s inputs, understanding their contributions to the model s predictions, and a further evaluation of the generalization capacity for unknown samples. This thesis aims to design optimized ML-based PL models for different applications for the 5G and beyond technologies. These applications encompass millimeter wave (mmWave) links for indoor and outdoor environments in the frequency band from 26.5 to 40 GHz, macrocell coverage in the sub-6 GHz spectrum, and vehicular communications using measurements campaign carried out by the Laboratory of Radio-propagation, CETUC, in Rio de Janeiro, Brazil. Several ML algorithms are exploited, such as artificial neural network (ANN), support vector regression (SVR), random forest (RF), and gradient tree boosting (GTB). Furthermore, we have extended two empirical models for mmWave with improved PL prediction. We proposes a methodology for robust ML model selection and a methodology to select the most suitable predictors for the machines considered based on performance improvement and the model s interpretability. In adittion, for the vehicle-to-vehicle (V2V) channel, a convolutional neural network (CNN) technique is also proposed using a transfer learning approach to deal with small datasets. The generalization tests proposed shows the ability of the ML models to learn the pattern between the model’s inputs and PL, even in more challenging environments and scenarios of unknown samples.
116

[pt] AVALIANDO TÉCNICAS PARA A REFLEXÃO ÉTICA E COMUNICAÇÃO SOBRE MODELOS DE APRENDIZADO DE MÁQUINAS PARA DESENVOLVEDORES / [en] EVALUATING APPROACHES FOR DEVELOPERS ETHICAL REASONING AND COMMUNICATION ABOUT MACHINE LEARNING MODELS

JOSE LUIZ NUNES 30 November 2021 (has links)
[pt] O uso de modelos de aprendizado de máquina se tornou ubíquo para um leque diverso de tarefas. Contudo, ainda não há nenhuma forma estabelecida para refletir sobre questões éticas em seu processo de desenvolvimento. Neste trabalho, realizamos um estudo qualitativo para avaliar duas técnicas propostas pela literatura para auxiliar desenvolvedores a refletirem sobre questões éticas relacionadas à construção e uso de modelos de aprendizado de máquina: (i) Model Cards; e o (ii) Template Estendido de Metacomunicação. Apresentamos nossos resultados a respeito do uso do Model Card pelos participantes, com o propósito de entender como esses atores interagiram com a ferramenta, assim como a dimensão ética de sua reflexão durante nossas entrevistas. Nosso objetivo é melhorar técnicas para desenvolvedores disponibilizaram informações sobre seus modelos e que a reflexão ética sobre os sistemas que desenvolveram. Além disso, nosso trabalho tem como objetivo contribuir para o desenvolvimento de um uso mais justo e ético de sistemas de aprendizado de máquina. / [en] Machine learning algorithms have become widespread for a wide array of tasks. However, there is still no established way to deal with the ethical issues involved in their development and design. Some techniques have been proposed in the literature to support the reflection and/or documentation of the design and development of machine learning models, including ethical considerations, such as: (i) Model Cards and (ii) the Extended Metacommunication Template. We conducted a qualitative study to evaluate the use of these tools. We present our results concerning the use of the Model Card by participants, with the objective of understanding how these actors interacted with the relevant tool and the ethical dimension of their reflections during our interviews. Our goal is to improve and support techniques for developers to disclose information about their models and reflect ethically about the systems they design. Furthermore, we aim to contribute to the development of a more ethically informed and fairer use of machine learning.
117

[en] ASSESSEMENT OF MODELS BASED ON ARTIFICIAL NEURAL NETWORKS FOR PERFORMANCE ANALYSIS OF ENGINES AND GENERATORS / [pt] AVALIAÇÃO DE MODELOS BASEADOS EM REDES NEURAIS ARTIFICIAIS PARA ANÁLISE DE DESEMPENHO DE MOTORES E GERADORES

NAIARA RINCO DE MARQUES E CARMO 09 August 2022 (has links)
[pt] Diante da crise ambiental dos dias atuais, desenvolver tecnologias de menor impacto negativo e promover ações de eficiência energética tornam-se imprescindíveis para conciliar produtividade e redução de emissões. Neste contexto, aprofundar-se no estudo de motores de combustão interna modelando seu funcionamento se apresenta como uma ferramenta bastante interessante, seja por ensaios em bancada ou modelagens. O presente trabalho buscou desenvolver modelos usando diferentes arquiteturas de Redes Neurais Artificiais (RNAs) para obter parâmetros de performance de Motores de Combustão Interna movidos a gás natural e a misturas de diesel – biodiesel – etanol. Para o primeiro caso, foram coletados dados de 5 motores visando a avaliação da eficiência térmica, consumo específico, temperatura de exaustão, e para o segundo a base de dados contempla um motor, sobre o qual foram avaliados, em acréscimo aos parâmetros mencionados, os coeficientes de compressão e expansão da politrópica, o consumo específico de etanol, a taxa máxima de liberação de calor e a pressão máxima. Para as redes que apresentaram melhores resultados, foram construídas superfícies de resposta a fim de analisar os modelos sobre a perspectiva do fenômeno que representam. Foi possível obter modelos com boa representatividade dos parâmetros mencionados (obtendo valores de R2 acima de 70 por cento para dados de treino e teste), exceto para os dois coeficientes da politrópica. Neste caso, embora os erros fossem relativamente satisfatórios, as superfícies de resposta atingiram extremos que não condizem com a teoria relacionada. Por outro lado, foi possível construir um modelo para a eficiência térmica a partir do consumo e abertura da válvula, com R2 de 99 por cento para treino e teste. Isto se explica pelo fato de que a primeira variável de entrada é parte da equação que calcula o parâmetro em questão, e a segunda está ligada à relação ar-combustível da mistura. / [en] Faced with the current environmental crisis, developing technologies with less negative impact and promoting energy efficiency actions are essential to reconcile productivity and emissions reduction. In this context, the study of internal combustion engines by modeling their operation presents itself as a very interesting tool, whether by bench tests or modeling. The present work aimed to develop models using different architectures of Artificial Neural Networks (ANNs) to obtain performance parameters of Internal Combustion Engines powered by natural gas and blends of diesel – biodiesel – ethanol. For the first case, 5 engines were considered to evaluate the thermal efficiency, specific consumption, exhaust temperature, and for the second case, the database includes an engine, on which, in addition to the mentioned parameters, the compression and expansion polytropic coefficients were evaluated, the specific consumption of ethanol, the maximum rate of heat release and the maximum pressure. For the networks that presented better results, response surfaces were made in order to analyze the models from the perspective of the phenomenon they represent. It was possible to obtain models with good representation of the mentioned parameters (obtaining R2 values above 70 percent for training and test data), except for the two polytropic coefficients. In this case, although the errors were relatively satisfactory, the response surfaces reached extremes that do not agree with the related theory. On the other hand, it was possible to build a model for thermal efficiency from consumption and throttle, with R2 of 99 percent for training and testing. This is explained by the fact that the first input variable is part of the equation that calculates this parameter, and the second is linked to the air-fuel ratio of the mixture.
118

[en] A SOFTWARE ARCHITECTURE TO SUPPORT DEVELOPMENT OF MEDICAL IMAGING DIAGNOSTIC SYSTEMS / [pt] UMA ARQUITETURA DE SOFTWARE PARA APOIO AO DESENVOLVIMENTO DE SISTEMAS DE DIAGNÓSTICO MÉDICOS POR IMAGEM

RICARDO ALMEIDA VENIERIS 02 August 2018 (has links)
[pt] O apoio diagnóstico de exames médicos por imagem utilizando técnicas de Inteligência Artificial tem sido amplamente discutido e pesquisado academicamente. Diversas técnicas computacionais para segmentação e classificação de tais imagens são continuamente criadas, testadas e aperfeiçoadas. Destes estudos emergem sistemas com alto grau de especialização que se utilizam de técnicas de visão computacional e aprendizagem de máquina para segmentar e classificar imagens de exames utilizando conhecimento adquirido através de grandes coleções de exames devidamente laudados. No domínio médico há ainda a dificuldade de se conseguir bases de dados qualificada para realização da extração de conhecimento pelos sistemas de aprendizagem de máquina. Neste trabalho propomos a construção de uma arquitetura de software que suporte o desenvolvimento de sistemas de apoio diagnóstico que possibilite: (i) a utilização em múltiplos tipos exames, (ii) que consiga segmentar e classificar, (iii) utilizando não só de estratégias padrão de aprendizado de máquina como, (iv) o conhecimento do domínio médico disponível. A motivação é facilitar a tarefa de geração de classificadores que possibilite, além de buscar marcadores patológicos específicos, ser aplicado em objetivos diversos da atividade médica, como o diagnóstico pontual, triagem e priorização do atendimento. / [en] The image medical exam diagnostic support using Artificial Intelligence techniques has been extensively discussed and academically researched. Several computational techniques for segmentation and classification of such images are continuously created, tested and improved. From these studies, highly specialized systems that use computational vision and machine learning techniques to segment and classify exam images using knowledge acquired through large collections of lauded exams. In the medical domain, there is still the difficulty of obtaining qualified databases to support the extraction of knowledge by machine learning systems. In this work we propose a software architecture construction that supports diagnostic support systems development that allows: (i) use of multiple exam types, (ii) supporting segmentation and classification, (iii) using not only machine learning techniques as, (iv) knowledge of the available medical domain. The motivation is to facilitate the generation of classifiers task that, besides searching for specific pathological markers, can be applied to different medical activity objectives, such as punctual diagnosis, triage and prioritization of care.
119

[pt] CARACTERIZAÇÃO DE COMPÓSITOS CIMENTÍCIOS REFORÇADOS COM FIBRAS: APRENDIZAGEM PROFUNDA, MICROTC DE RAIO X INSITU, CORRELAÇÃO DIGITAL DE VOLUME / [en] CHARACTERIZATION OF STRAIN-HARDENING CEMENT-BASED COMPOSITES: DEEP LEARNING, IN-SITU X-RAY MICROCT AND DIGITAL VOLUME CORRELATION

RENATA LORENZONI 29 December 2021 (has links)
[pt] entendimento do macro comportamento dos materiais, este trabalho apresenta soluções inovadoras para a análise de imagens 3D obtidas por microtomografia computadorizada de raios-X (microCT). O material estudado conhecido pelo termo em inglês “strain-hardening cement-based composites” ou pela abreviação SHCC é um compósito cimentício reforçado com fibras que atinge deformações significativas através da formação de múltiplas fissuras, estabelecendo um material cimentício com característica pseudo-dúctil. O primeiro desafio deste trabalho foi reconhecer e quantificar as fases constituintes nas imagens 3D de SHCC obtidas por microCT. Materiais com estruturas complexas podem apresentar imagens em que as fases internas não podem ser distinguidas pela técnica de limiarização clássica, exigindo o uso de outra técnica como a segmentação por Deep Learning (DL). Portanto, este trabalho utilizou DL como solução para esta tarefa. Desta forma, as características de cada fases puderam ser correlacionadas ao comportamento mecânico macro do material em ensaios de microCT in-situ. Outro método moderno de análise de imagens 3D utilizado foi a correlação digital de volume (em inglês, digital volume correlation - DVC). O DVC é uma técnica que estima o campo de deformação sobre todo o volume da amostra, correlacionando as imagens 3D nos estados descarregado e carregado. Assim, as imagens obtidas nos ensaios de tração e compressão in-situ puderam ter seus deslocamentos internos medidos e deformações calculadas. Em síntese, este trabalho trouxe avanços ao campo do processamento digital e análise de imagens 3D, aplicadas a materiais cimentícios, mas que também podem se adaptar à análise de diversos materiais. / [en] Considering the importance of micro and mesoscale analyses to understand the macro behavior of materials, this work brings innovative solutions for analyzing 3D images obtained by X-ray micro-computed tomography (microCT). The studied material was the strain-hardening cement-based composites (SHCC), a fiber reinforced cementitious composite that achieves significant deformations through multiple cracks formation, resulting in a cementitious material with pseudo ductile features. The first challenge of this work was to recognize and quantify the constituent phases in the 3D images of SHCC obtained by microCT. Materials with complex structures may present images in which the internal phases cannot be distinguished by the classical thresholding technique, requiring the use of another technique such as segmentation by Deep Learning (DL). Therefore, this work used DL as a solution for this task. Then, the features of each phase could be correlated to the macro mechanical behavior of the material in in-situ microCT tests. Another modern method for analyzing 3D images used was the digital volume correlation (DVC). DVC is a technique that estimates full-field strain in 3D over the entire volume of the specimen by correlating imaging volumes of the specimen in unloaded and loaded states. Thus, the images obtained from tensile and compression in-situ tests could have their internal displacements measured and strain calculated. In summary, this work brought advances to the 3D image processing and analysis field, applied to cementitious materials, but which could also adapt for the analysis of various materials.
120

[en] REAL-TIME RISKS DETERMINATION OF TRANSMISSION LINES OUTAGE BY LIGHTNINGS / [pt] DETERMINAÇÃO EM TEMPO REAL DOS RISCOS DE DESLIGAMENTOS EM LINHAS DE TRANSMISSÃO DEVIDO A DESCARGAS ATMOSFÉRICAS

MARCELO CASCARDO CARDOSO 12 February 2019 (has links)
[pt] As descargas atmosféricas são de grande importância para o setor elétrico, sendo frequentemente responsáveis por desligamentos de linhas de transmissão, que podem desencadear uma sequência de eventos que levem o sistema elétrico interligado ao colapso. As longas extensões de linhas de transmissão, expostas a intemperes climáticas, determinam uma probabilidade significativa de incidência direta de descargas atmosféricas nestes equipamentos. Devido ao caráter estratégico das linhas para o fornecimento de energia e a constatação de que descargas atmosféricas estão entre as principais causas de desligamentos, torna-se importante o estudo do comportamento das descargas atmosféricas, antes do instante da ocorrência do desligamento das linhas de transmissão, para compreender os padrões característicos potenciais causadores destes desligamentos. Os estudos encontrados atualmente estão orientados na eficiência das redes de detecção de descargas atmosféricas e na identificação de condições climáticas que indiquem a ocorrência de raios de forma preditiva, sem correlação a ocorrências em linhas de transmissão. Assim, essa dissertação consiste na determinação do risco de desligamentos de linhas de transmissão por descargas atmosféricas, visando fornecer informações antecipadas e possibilitar ações operativas para manter a segurança do sistema elétrico. O modelo desenvolvido nesse estudo, denominado Risco de Desligamentos de Linhas de Transmissão por Raios (RDLR), é composto de dois módulos principais, sendo o primeiro o agrupamento do conjunto amostral de descargas atmosféricas, realizado através de um método baseado em densidade. Nesse módulo, os ruídos são eliminados de forma eficiente e são formados grupos representativos de descargas atmosféricas. O segundo módulo consiste em uma etapa classificatória, baseado em redes neurais artificiais para identificar padrões de grupos de descargas que representem riscos de desligamentos de linhas de transmissão. Visando a otimização do modelo, foi aplicado um método de seleção das variáveis, através de componentes principais, para determinar aquelas que mais contribuem na caracterização desses eventos. O modelo RDLR foi testado com dados reais dos registros de desligamentos de linhas de transmissão, associado a outro banco com dados reais contendo milhões de registros de descargas atmosféricas oriundos das redes de detecção de raios, sendo obtidos excelentes resultados na determinação dos riscos de desligamentos de linhas de transmissão por descargas atmosféricas. / [en] Atmospheric discharges are of great importance to power systems, and are often responsible for outages of transmission lines, which can trigger a sequence of events that leads to a system collapse. The long extensions of transmission lines, exposed to climatic conditions, create significant probability of direct incidence of atmospheric discharges in these equipments. Due to the strategic nature of power supply lines and the fact that atmospheric discharges are among the main causes of outages, it is important to study atmospheric discharges characteristics before failure of transmission lines and understand patterns that are responsible for interruptions. Current studies focus on efficiency of lightning detection networks and on identification of climatic conditions that indicate lightning occurrence in a predictive approach, without any correlation with transmission lines outages. Therefore, this thesis consists on real-time risk determination of transmission lines outage by lightning, providing early information to enabling operational procedures for power system safety. The proposed model, named Transmission Lines Outage Risk by Lightning (TLORL) is composed of two main modules: Atmospheric Discharge Data Clustering and Classification. In the atmospheric discharges data-clustering module, performed by a density-based method, the outages are efficiently eliminated and representative groups of atmospheric discharges are formed. The second module consists of a classification step, based on artificial neural networks, to identify patterns of discharges groups that represent risks to cause transmission lines outages. Aiming at improving the proposed model, principal components analysis (PCA) was applied to determine the input variables that most contribute to the events characterization. The TLORL model was tested with real data transmission line outages, associated to another database with millions lightning records from the detection networks, producing excellent results of transmission lines outages caused by atmospheric discharges.

Page generated in 0.0844 seconds