11 |
Wetland assessment in Alberta's oil sands mining areaRooney, Rebecca Unknown Date
No description available.
|
12 |
Assessment of Submerged Vegetation as Indicators of Irgarol ContaminationFernandez, Melissa V 13 September 2010 (has links)
Irgarol 1051 is a common antifoulant toxic to certain marine organisms. Submerged aquatic vegetation (SAV) are exposed to this herbicide when it leaches into the marine environment from painted structures, making SAVs ideal candidates to function as sentinel indicator of contamination. In the initial stage of this study, Coconut Grove and Key Largo Harbor were assessed for environmental exposure to Irgarol. Water, sediment and SAVs were collected, the latter two subject to automated solid phase extraction, and all samples analyzed by GC/MS-SIM for Irgarol and its metabolite, M1. Of the vegetation analyzed, Halodule and Syringodium had the highest capacity to bioaccumulate Irgarol and M1. The root system and leaf contributed negligibly and significantly, respectively, to Irgarol uptake. In the final stage, a transplant between Coconut Grove and Chicken Key showed that the biota Thalassia and Halodule were able to uptake and depurate Irgarol, respectively, over a period of 30 days.
|
13 |
A Net Plankton Survey of a Small Perennial PondLegett, Jesse Harrison 08 1900 (has links)
This thesis resulted from an examination of Lake Worth plankton in comparison to plankton found in similar bodies of water throughout the United States.
|
14 |
Investigation of open channel flow with unsubmerged rigid vegetation by the lattice Boltzmann methodJing, H., Cai, Y., Wang, W., Guo, Yakun, Li, C., Bai, Y. 10 September 2019 (has links)
Yes / Aquatic vegetation can significantly affect flow structure, sediment transport, bed scour and water quality in rivers, lakes, reservoirs and open channels. In this study, the lattice Boltzmann method is applied for performing the two dimensional numerical simulation of the flow structure in a flume with rigid vegetation. A multi-relaxation time model is applied to improve the stability of the numerical scheme for flow with high Reynolds number. The vegetation induced drag force is added in lattice Boltzmann equation model with the algorithm of multi-relaxation time in order to improve the simulation accuracy,. Numerical simulations are performed for a wide range of flow and vegetation conditions and are validated by comparing with the laboratory experiments. Analysis of the simulated and experimentally measured flow field shows that the numerical simulation can satisfactorily reproduce the laboratory experiments, indicating that the proposed lattice Boltzmann model has high accuracy for simulating flow-vegetation interaction in open channel. / National Natural Science Foundation of China (grant number: 11861003 and 11761005)
|
15 |
Examining Wrack in Mosquito Lagoon to Analyze Biodiversity And Seagrass ViabilityJerrell, Nicole 01 January 2024 (has links) (PDF)
Seagrass restoration of Halodule wrightii, has become crucial as seagrass coverage in the Indian River Lagoon (IRL) declined by 58% between 2011 and 2019. To understand the abundance of seagrass fragments available for natural recruitment and restoration, we tracked the abundance of viable fragments found in the wrack in Mosquito Lagoon. Wrack is plant material, including seagrass fragments, mangrove propagules, and detritus. Seagrass fragments were considered viable if the fragment had an apical meristem present. Replicate samples were collected from 5 locations every two weeks, starting in September 2022 and ending in September 2023, and the samples were processed in the laboratory. To date, H. wrightii is the most common species and is most abundant during the fall season. Among the total H. wrightii fragments collected, 54.1% had apical meristems, the growth tips needed to produce leaf-bearing shoots. Annually, on average, 7 fragments with apical meristems per square meter a month were recorded. Among only fragments with an apical meristem found during this study, 92.8% had less than five shoots. The average fragment that was washing ashore had only two shoots. This study will assist restoration practitioners in understanding the availability of viable H. wrightii fragments for natural and active restoration efforts.
|
16 |
Aquatic vegetation processes in a floodplain-river system and the influence of lateral dynamics and connectivityKeruzoré, Antoine January 2012 (has links)
In river ecology the description and understanding of near-natural ecosystem functionality is a difficult task to achieve as the majority of river floodplains have been intensively impacted by human activities. This work addresses ecological functionality of a relatively unimpacted large river system, focussing on the lateral dynamic and connectivity mechanisms driving aquatic vegetation processes. Macrophytes were found to be very patchily distributed at the riverscape scale, being mainly confined to low energy lateral habitats in the floodplain, such as backwaters. Backwaters provided favourable conditions for plants to colonise and recruit and contributed highly to species diversity and productivity at the floodplain scale. Differences between backwaters were attributed to the frequency of connectivity with the main channel during flood events. Nevertheless, the ecological mechanism driving diversity through flooding appears not to be related to flow disturbance. Biomass produced in backwaters was found to remain stable after potentially scouring floods. Therefore the hypothesis that flood disturbances promote species diversity through the removal and destruction of biomass and rejuvenate communities such that species coexistence is increased was rejected. Rather, it appears that diversity in backwaters increases along a temporal gradient as a response to the input of colonists and their accumulation overtime through successive flood inputs. Despite the apparently non-destructive effect of floods on macrophyte biomass, backwaters appear to have a significant role in exporting large amounts of plant propagules from the site of production. Backwaters represented a net source of propagules which highly enriched the main channel pool of potential colonists. However, whereas propagules could be dispersed for long distances in flood flows the probability for them to reach a suitable downstream habitat was extremely low. This work showed that dispersal at baseflow and entry to backwaters through the downstream end after short dispersal drift provided a greater chance of successful colonisation despite the individually much shorter distance moved. Backwaters were demonstrated to be rather isolated aquatic habitats, even though they experience hydrological connectivity, suggesting that primary colonisation of these sites is a limiting step. Instead, colonisation was shown to rely primarily on propagules generated internally by established plants. Whereas colonisation could occur via internal re-organisation of existing plant propagules, the backwater seed bank could also contribute to the macrophytes species established in backwaters. Such contribution was consistently low to medium along a gradient of disturbances and connectivity and showed independence from such river flow processes. Species richness was found to be higher in the established species than in the seed bank, suggesting that asexual reproduction is prioritised by aquatic vegetation in riverine backwaters. The occurrence or persistence of macrophyte species in backwaters depends upon rhizome and plant shoot regeneration. The lack of influence of connectivity revealed that plants may originate from both in situ and externally waterborne vegetative propagules derived from other upstream backwaters. This research demonstrated that the lateral dynamic and associated connectivity are major components of river floodplain ecology which generate a wide spectrum of habitats and have a controlling effect on vegetation processes. Therefore a naturally dynamic ecological state is required to support ecosystem functionality in large river floodplains and especially to maintain a high level of species diversity, productivity and colonisation of backwaters by macrophytes.
|
17 |
Espacialização do biovolume de plantas aquáticas submersas a partir da integração de dados obtidos por sensores remotosBoschi, Letícia Sabo [UNESP] 25 May 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:31Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-05-25Bitstream added on 2014-06-13T19:06:11Z : No. of bitstreams: 1
boschi_ls_dr_prud.pdf: 3170628 bytes, checksum: e8c33fe726b1f0ca366ff51cc7177d42 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / As plantas aquáticas têm um papel fundamental no equilíbrio dos ambientes aquáticos e importância crucial no fornecimento de alimento e refúgio para animais. Porém, seu crescimento desequilibrado pode obstruir canais, represas e reservatórios e reduzir a disponibilidade de água para uso humano. No que se refere a plantas aquáticas submersas, a utilização de medidas de controle torna-se mais complexa, face à dificuldade em mapear e quantificar volumetricamente as áreas de infestação. Nessas situações, considera-se que a combinação de dados georreferenciados oriundos de sensores baseados tanto na energia eletromagnética do espectro óptico, como em sinais acústicos, possibilite o mapeamento e mensuração dessas áreas, auxiliando na elaboração de propostas de manejo sustentáveis para esse tipo de vegetação aquática. Assim, o presente trabalho prevê a utilização integrada de dados ópticos e acústicos, para estimar o biovolume de plantas aquáticas submersas. As análises foram conduzidas a partir de dados obtidos em três levantamentos ecobatimétricos e espectrorradiométricos (abril de 2010, novembro de 2010 e janeiro de 2011) realizados em uma área de estudos localizada no Rio Paraná, caracterizada pela dificuldade de navegação, e para a qual foi adquirida a imagem World View-2 em dezembro de 2010. A correlação entre biovolume de plantas aquáticas submersas e valores de brilho registrados em bandas do espectro óptico visível da imagem World View-2 foi menor que 60%, inviabilizando a utilização dos dados espectrais para espacialização do biovolume... / Aquatic plants are fundamental for the balance of opened aquatic environments and crucial in providing food and shelter for animals. However, its unbalanced growing can clog channels, dams and reservoirs, reducing water availability for human use. In the case of submerged aquatic vegetation, the use of control actions becomes more complex due to the difficulty in mapping and volumetrically quantifying the areas of infestation. In these situations, it is considered that georeferenced data – originated both in sensors based on electromagnetic energy of the optical spectrum and acoustic signals – allow the mapping and measuring of these areas, helping to create proposals for the sustainable management of this type of aquatic vegetation. This work uses optical and acoustic data integration method for estimating the biovolume of submerged aquatic vegetation and performing the biovolume mapping. The analysis was performed by using data from three hydroacoustic and spectroradiometer surveys – April 2010, November 2010, and January 2011 – carried out in a test area located in the Paraná River, characterized by the difficulty of navigation. A World View-2 image of this area was acquired in December 2010 to be used in this work. The correlation between the biovolume of submerged aquatic vegetation and brightness values recorded in the visible optical spectrum bands was less than 60%, precluding the use of spectral data for spatial distribution of biovolume through the adjustment of a regression... (Complete abstract click electronic access below)
|
18 |
Espacialização do biovolume de plantas aquáticas submersas a partir da integração de dados obtidos por sensores remotos /Boschi, Letícia Sabo . January 2011 (has links)
Orientador: Maria de Lourdes Bueno Trindade Galo / Banca: João Fernando Custódio da Silva / Banca: Nilton Nobuhiro Imai / Banca: Cláudio Clemente Faria Barbosa / Resumo: As plantas aquáticas têm um papel fundamental no equilíbrio dos ambientes aquáticos e importância crucial no fornecimento de alimento e refúgio para animais. Porém, seu crescimento desequilibrado pode obstruir canais, represas e reservatórios e reduzir a disponibilidade de água para uso humano. No que se refere a plantas aquáticas submersas, a utilização de medidas de controle torna-se mais complexa, face à dificuldade em mapear e quantificar volumetricamente as áreas de infestação. Nessas situações, considera-se que a combinação de dados georreferenciados oriundos de sensores baseados tanto na energia eletromagnética do espectro óptico, como em sinais acústicos, possibilite o mapeamento e mensuração dessas áreas, auxiliando na elaboração de propostas de manejo sustentáveis para esse tipo de vegetação aquática. Assim, o presente trabalho prevê a utilização integrada de dados ópticos e acústicos, para estimar o biovolume de plantas aquáticas submersas. As análises foram conduzidas a partir de dados obtidos em três levantamentos ecobatimétricos e espectrorradiométricos (abril de 2010, novembro de 2010 e janeiro de 2011) realizados em uma área de estudos localizada no Rio Paraná, caracterizada pela dificuldade de navegação, e para a qual foi adquirida a imagem World View-2 em dezembro de 2010. A correlação entre biovolume de plantas aquáticas submersas e valores de brilho registrados em bandas do espectro óptico visível da imagem World View-2 foi menor que 60%, inviabilizando a utilização dos dados espectrais para espacialização do biovolume... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Aquatic plants are fundamental for the balance of opened aquatic environments and crucial in providing food and shelter for animals. However, its unbalanced growing can clog channels, dams and reservoirs, reducing water availability for human use. In the case of submerged aquatic vegetation, the use of control actions becomes more complex due to the difficulty in mapping and volumetrically quantifying the areas of infestation. In these situations, it is considered that georeferenced data - originated both in sensors based on electromagnetic energy of the optical spectrum and acoustic signals - allow the mapping and measuring of these areas, helping to create proposals for the sustainable management of this type of aquatic vegetation. This work uses optical and acoustic data integration method for estimating the biovolume of submerged aquatic vegetation and performing the biovolume mapping. The analysis was performed by using data from three hydroacoustic and spectroradiometer surveys - April 2010, November 2010, and January 2011 - carried out in a test area located in the Paraná River, characterized by the difficulty of navigation. A World View-2 image of this area was acquired in December 2010 to be used in this work. The correlation between the biovolume of submerged aquatic vegetation and brightness values recorded in the visible optical spectrum bands was less than 60%, precluding the use of spectral data for spatial distribution of biovolume through the adjustment of a regression... (Complete abstract click electronic access below) / Doutor
|
19 |
VATTENLEVANDE FÅGLARS PÅVERKAN PÅ VEGETATIONEN I GRUNDA HAVSMILJÖER : FJÄRRANALYS SOM VERKTYG FÖR ATT IDENTIFIERA BETNINGSMÖNSTER / The effect of waterfowl on submerged aquatic vegetation in shallow bays : Remote sensing as a tool to identify grazing patternsGerland Fontana, Vanessa January 2023 (has links)
Submerged aquatic vegetation (SAV) is an important source of food for waterfowl. Effects of waterfowl grazing on SAV has foremost been studied in freshwater and agricultural ecosystems. This study used drone-based remote sensing to identify waterfowl grazing patterns and quantify the effect their grazing has on SAV in shallow coastal areas in Västerbotten County. Six subareas containing a total of 27 bays were studied in detail. Grazed areas were delimited by polygons in GIS. Using GIS, layers containing water depth, wave exposure and biotope were added to polygons and mean-values were calculated. Field data containing types of SAV were noted in grazed areas and compiled by number of observations. Data was tested in a regression analysis and a X2-test. Results revealed no connection between water depth and wave exposure in regard to the proportion of grazed area. Grazing was identified in 20 out 27 bays and in 41 out of 126 drone images. Field data containing charophytes often overlapped with polygons for grazed areas, but a more systematic collection of data is needed to conclude whether the presence of charophytes is crucial for the choice of grazing area. Shallow coastal areas can have a great variance in SAV species composition from year to year due to ice scraping during winter and yearly land raise. Continuous studies of these areas are therefore needed in order to conclude if changes in SAV species composition is due to abiotic factors or grazing from waterfowl.
|
20 |
Identifiering av igenvuxna sjöar och vattendrag med hjälp av fjärranalys : En vegetationsförändringsanalys utifrån optiskt satellitdata över sjön Sottern, i Sverige. / Identification of overgrown lakes and watercourses using remote sensing : A vegetation change analysis based on optical remote sensing over lake Sottern, in Sweden.Jonsson, Henrik January 2024 (has links)
Runtom i Sverige och Europa skapar igenvuxna sjöar och vattendrag allt fler problem, vilket bland annat beror på klimatförändringar och mänsklig påverkan. En av de främsta anledningarna till igenväxning av sjöar och vattendrag är övergödning. Studiens syfte är att utvärdera om det är möjligt att på ett automatiskt sätt identifiera utbredning av vattenvegetation i sjöar och vattendrag med hjälp av fjärranalys och GIS. En analys av vegetationsförändringar i sjön Sottern i Uppland genomförs, där utbredd igenväxning skapar problem och där röjningsmaskiner används för att hantera vegetationen, som främst består av bladvass, näckrosor och annan flytande vatten-vegetation. Genom tillämpning av olika klassificeringsalgoritmer, bandkombinationer och vegetationsindex undersöks förändringar i sjöns tillstånd genom att klassa Sottern i två huvudklasser, vatten och vattenvegetation. Studien baseras på fjärranalysdata från den optiska satellitkonstellationen Sentinel-2 och en högupplöst referensbild från Google Earth Pro. Data samlades in under växtsäsongen, maj till oktober, för åren 2021 och 2022 för att analysera om och hur vattenvegetationen förändras över tid. Resultaten visar att Maximum Likelihood Classification (MLC) framträder som den mest effektiva algoritmen för att studera vegetationsförändringar, särskilt om den appliceras på en "False color" bandkombination bestående av banden 8 (NIR), 4 (rött) och 3 (grönt). MLC visar högre (94%) noggrannhet jämfört med Random Trees (RT) och Support Vector Machine (SVM). Genom att tillämpa vegetationsindexet NDVI (Normalized Difference Vegetation Index) ger studien en fördjupad förståelse för hur vegetationen förändras över tid. Genom att kombinera resultaten från dessa metoder går det att dra slutsatser om hur vattenvegetationen breder ut sig över tid i sjön Sottern, där en tydlig ökning av vattenvegetation sker mellan mitten av maj till mitten av juni, medan minskningen av vattenvegetationen inte är lika konsekvent. / In Europe, overgrown lakes and watercourses are creating increasing problems, which are partly due to climate change and human impact. One of the main reasons for the overgrowth of lakes and watercourses is eutrophication. The aim of the study is to evaluate the possibility of automatically identifying overgrown lakes and watercourses using remote sensing and GIS. An analysis of vegetation changes in Lake Sottern in Uppland county, Sweden is conducted, where overgrowth creates problems and where clearing machines are used to manage the vegetation, primarily consisting of reeds, water lilies, and other aquatic vegetation. By applying various classification algorithms, band combinations and vegetation indices, changes in the lake's condition are investigated by classifying Sottern into two main classes: water and aquatic vegetation. The study is based on remote sensing data from the optical satellite constellation Sentinel-2 and a high-resolution reference image from Google Earth Pro. Data were collected during the growing season, from May to October, for the years 2021 and 2022 to analyze if and how aquatic vegetation changes over time. The results show that Maximum Likelihood Classification (MLC) emerges as the most effective algorithm for identifying aquatic vegetation, especially when combined with a "False color" band combination consisting of bands 8 (NIR), 4 (red), and 3 (green). MLC shows higher accuracy compared to Random Trees (RT) and Support Vector Machine (SVM). By applying the Normalized Difference Vegetation Index (NDVI), the study provides a deeper understanding of how vegetation changes over time. By combining the results from these methods, it is possible to draw conclusions about how aquatic vegetation changes over time in lakes like Sottern, where a clear increase in aquatic vegetation occurs between May and June, while the decrease in aquatic vegetation is not as consistent.
|
Page generated in 0.11 seconds