51 |
Increasing Dietary Linoleic Acid Does Not Increase Tissue Arachidonic Acid Content in Adults Consuming Western- Type DietsRett, Brian 01 May 2011 (has links)
Linoleic acid, with a DRI of 12-17g/d, is the most highly consumed polyunsaturated fatty acid in the Western diet and is found in virtually all commonly consumed foods. The concern with dietary linoleic acid, being the metabolic precursor of arachidonic acid, is its consumption may enrich tissues with arachidonic acid and contribute to chronic and overproduction of bioactive eicosanoids. However, no systematic review of human trials regarding linoleic acid consumption and subsequent changes in tissue levels of arachidonic acid has been undertaken. In this study, we reviewed the human literature that reported changes in dietary linoleic acid and its subsequent impact on changing tissue arachidonic acid in erythrocytes and plasma/serum phospholipids. We identified, reviewed, and evaluated all peer-reviewed published literature presenting data outlining changes in dietary linoleic acid in adult human clinical trials that reported changes in phospholipid fatty acid composition (specifically arachidonic acid) in plasma/serum and erythrocytes within the parameters of our inclusion/exclusion criteria. Decreasing dietary linoleic acid up to 90% was not significantly correlated with changes in tissue arachidonic acid levels (p=0.39). Similarly, when dietary linoleic acid levels were increased six fold, no significant correlations with tissue arachidonic acid levels were observed (p=0.72). However, there was a positive relationship between dietary gamma-linolenic acid and arachidonic acid on changes in tissue arachidonic levels. Our results do not support the concept that modifying current intakes of dietary linoleic acid has an effect on changing tissue levels of arachidonic acid in adults consuming Western-type diets.
|
52 |
Feedback-inhibition of glucagon-stimulated glycogenolysis in hepatocyte/kupffer cell cocultures by glucagon-elicited prostaglandin production in kupffer cellsHespeling, Ursula, Jungermann, Kurt, Püschel, Gerhard P. January 1995 (has links)
Prostaglandins, released from Kupffer cells, have been shown to mediate the increase in hepatic glycogenolysis by various stimuli such as zymosan, endotoxin, immune complexes, and anaphylotoxin C3a involving prostaglandin (PG) receptors coupled to phospholipase C via a G(0) protein. PGs also decreased glucagon-stimulated glycogenolysis in hepatocytes by a different signal chain involving PGE(2) receptors coupled to adenylate cyclase via a G(i) protein (EP(3) receptors). The source of the prostaglandins for this latter glucagon-antagonistic action is so far unknown. This study provides evidence that Kupffer cells may be one source: in Kupffer cells, maintained in primary culture for 72 hours, glucagon (0.1 to 10 nmol/ L) increased PGE(2), PGF(2 alpha), and PGD(2) synthesis rapidly and transiently. Maximal prostaglandin concentrations were reached after 5 minutes. Glucagon (1 nmol/L) elevated the cyclic adenosine monophosphate (cAMP) and inositol triphosphate (InsP(3)) levels in Kupffer cells about fivefold and twofold, respectively. The increase in glyco gen phosphorylase activity elicited by 1 nmol/L glucagon was about twice as large in monocultures of hepatocytes than in cocultures of hepatocytes and Kupffer cells with the same hepatocyte density. Treatment of cocultures with 500 mu mol/L acetylsalicylic acid (ASA) to irreversibly inhibit cyclooxygenase (PGH-synthase) 30 minutes before addition of glucagon abolished this difference. These data support the hypothesis that PGs produced by Kupffer cells in response to glucagon might participate in a feedback loop inhibiting glucagon-stimulated glycogenolysis in hepatocytes.
|
53 |
OX1 Orexin Receptor Signalling to PhospholipasesEkholm, Marie January 2010 (has links)
The neuropeptides orexin-A and orexin-B were discovered in 1998 and were first described as regulators of feeding behaviour. Later research has shown that they have an important role in the regulation of sleep. Two G protein-coupled receptors, OX1 and OX2 orexin receptors, mediate the cellular responses to orexins. The overall aim of this thesis was to investigate the OX1 orexin receptors signalling to phospholipases. Previous investigations have determined that orexin receptors induce Ca2+ elevations through both receptor-operated Ca2+ channels (ROCs) and store-operated Ca2+ channels (SOCs). In this thesis we investigated the importance of these influxpathways on orexin-mediated phospholipase (PLC) activation. The results demonstrate that ROC influx is enough to fully support orexin-stimulated PLC activation but that SOC influx has a further amplifying role. We also investigated the metabolites generated after PLC activation, inositolphosphates and diacylglycerol (DAG). The results indicate involvement of two different PLC activities with different substrate specificities one of them leading to DAG production without co-occurring IP3 production at low orexin receptor stimulation. The results also suggest that at even lower orexin receptor stimulation DAG is produced via the activation of phospholipase D. In this thesis we also investigated if the ubiquitous phospholipase A2 (PLA2) signalling system is involved in orexin receptor signalling. The results demonstrate that stimulation of the OX1 orexin receptors leads to arachidonic acid (AA) release. This release is fully dependent on Ca2+ influx, probably through ROC, and at the same time the studies demonstrate that ROC influx is partly dependent on PLA2 activation. At low orexin receptor activation the AA release seemed to in part rely on extracellular signal-regulated kinase. We also devised two methods to aid in these investigations. The first method enabled studies of the receptor-operated Ca2+ influx without interference of the co-occurring store-operated Ca2+ influx. This was done by the expression of IP3-metabolising enzymes IP3-3-kinase-A and IP3-5-phosphatase-I. The second method enables quantification of DAG and IP3 signalling in fixed cells using GFP-fused indicators, leading to a semi-quantitative but easily applicable pharmacological assay.
|
54 |
Regulation of 5-oxo-ETE synthesis by pyridine nucleotides in aging neutrophilsGraham, François. January 2008 (has links)
Neutrophils (polymorphonuclear leukocytes) are short lived granulocytes that playa primordial role in host innate defense against invading pathogens. Freshly isolated neutrophils spontaneously undergo apoptosis when cultured, which is associated with oxidative stress. We found that there is a dramatic shift in the metabolism of the 5-lipoxygenase product 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) from its biologically inactive o-oxidation product in freshly isolated neutrophils to the potent granulocyte chemoattractant 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) in neutrophils cultured for 24 h. o-oxidation of the chemoattractant leukotriene B4 (LTB4) was also reduced in aging neutrophils incubated with arachidonic acid, resulting in higher levels of LTB4. The reduced o-oxidation activity appeared to be due to a decrease in active LTB4 20-hydroxylase. In contrast, the increased 5-oxo-ETE formation was not associated with an increase in the amount of active 5-hydroxyeicosanoid dehydrogenase, which is required for its formation, but rather with a dramatic increase in its cofactor NADP +. NAD+ levels also increased, but NADPH levels remained unchanged after 24 h. There was also evidence for increased oxidative stress (high GSSG/GSH) in aging neutrophils. The changes in 5-HETE metabolism and pyridine nucleotides in cultured neutrophils could be inhibited by neutrophil survival factors and antioxidants. These results suggest that in severe inflammation, aging neutrophils that have evaded rapid uptake by macrophages may produce increased amounts of the chemoattractants 5-oxo-ETE and LTB4, resulting in delayed resolution of inflammation. Similarly, we found that the NADPH oxidase activator PMA caused a very rapid and dramatic increase in NADP + levels in both freshly isolated and cultured neutrophils, accompanied by a rapid increase in 5-oxo-ETE synthesis and reduced o-oxidation activity. Surprisingly, this was not accompanied by a corresponding decline in NADPH levels, which instead initially increased, but rather by a precipitous reduction in NAD+, which mirrored the increase in NADP+. These results suggest that the phosphorylation of NAD+ by NAD kinase may be very important for providing both NADP+ for 5-oxo-ETE synthesis and NADPH for the respiratory burst.
|
55 |
Diet enrichment with arachidonic and docosahexaenoic acid during the lactation period attenuates the effects of intrauterine growth restriction from birth to maturity in the guinea pig and improves maternal bone massBurr, Laura Lynn. January 2008 (has links)
Intrauterine growth restriction (IUGR) reduces bone mass by 10-30% and impairs arachidonic (AA) and docosahexaenoic (DHA) acid status in infants. Because AA and DHA enhance neonatal bone mass, the aim of this study was to determine the effects of dietary 0.5% AA and 0.2% DHA (w/w) prior to weaning on bone and growth. 40 guinea pigs were randomized to either a control (C) or low-protein diet (LP) during pregnancy and the C diet or the C diet with AA+DHA during lactation. Measurements included bone mass, metabolism, and strength, and erythrocyte lipid of sows and offspring from birth to 16 wk post-partum. The LP diet induced IUGR, while the AA+DHA increased bone mass by 5-20% in sows and offspring and corrected growth and bone mass in IUGR pups. Thus, AA+DHA provided in lactation rescues the growth trajectory in an IUGR state and is beneficial to maternal and neonatal bone mass.
|
56 |
Podocytopenia in Diabetic Nephropathy: A Role for the Thromboxane A2 TP ReceptorBugnot, Gwendoline Carine Denise 15 April 2013 (has links)
Although the etiology of diabetic nephropathy is still uncertain, proteinuria due to podocyte injury and loss (podocytopenia) are early features of the disease. Significant increases in thromboxane A2 (TXA2) production as well as expression of its receptor in animal models of diabetic nephropathy led to the hypothesis that TXA2 acting via its thromboxane-prostanoid (TP) receptor induces podocytopenia resulting in proteinuria.
Systemic infusion of a TP antagonist demonstrated an important role of TXA2/TP signalling in our model of streptozotocin induced type-1 diabetic nephropathy by reducing kidney damage including proteinuria. Podocyte specific TP overexpressing mice did not demonstrate more pathologic or dynamic kidney damage than non-transgenic mice in STZ-induced diabetic nephropathy. Further assessment of the TP transgene functionality in this mice line is necessary to validate those results.
Whereas the importance of TXA2/TP signalling is undeniable in diabetic nephropathy, it appears that podocyte TP receptors might not be directly targeted.
|
57 |
The role of arachidonic and docosahexaenoic acid in the alteration of hepatic fuel utilization throughout the perinatal period of the pigCampbell, Jenny A., January 2009 (has links)
Thesis (M.S.)--Ohio State University, 2009. / Title from first page of PDF file. Includes bibliographical references (p. 85-94).
|
58 |
Signal transduction pathways of Ca²⁺ sensitization in smooth muscle /Gailly, Philippe Luc. January 1997 (has links)
Thesis (Ph. D.)--University of Virginia, 1997. / Spine title: Ca²⁺ sensitization of smooth muscle. Includes bibliographical references (108-130). Also available online through Digital Dissertations.
|
59 |
Studies on arachidonic acid metabolism in normal and malignant hematopoietic cellsFeltenmark, Stina, January 2010 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2010.
|
60 |
Differential effects of arachidonic acid and docosahexaenoic acid on cell biology and osteoprotegerin synthesis in osteoblast-like cellsCoetzee, Magdalena. January 2005 (has links)
Thesis (PhD.(Physiology)--Faculty of Health Sciences)-University of Pretoria, 2005. / Summary in English and Afrikaans. Also available on the Internet via the World Wide Web.
|
Page generated in 0.0557 seconds