171 |
Estudo da osteoartrose em joelhos de cães secundária à ruptura do ligamento cruzado cranial / Study of the osteoarthitis in knees of dogs secondary to cranial cruciate ligament rupture in dogsSilva, Anderson Coutinho da 18 March 2009 (has links)
INTRODUÇÃO e OBJETIVO: A osteoartrite (OA) embora frequente tem patogênese incerta em humanos. Descrevemos modelo experimental original de OA em cães, analisando em dois tempos diferentes as consequências da Ruptura Espontânea do Ligamento Cruzado Cranial (RLCCr). MÉTODOS: Vinte animais machos com menos de 5 anos ( 20 a 45 Kg) com RLCCr submetidos à artrotomia para estabilização articular tiveram fragmentos articulares removidos para análise. O grupo RLCCr < 20 (10 animais) foi operado antes dos vinte dias e o grupo > 20 (10 animais) após 20 dias do início da lesão. Sete animais com OA pré-existente (OA) que morreram por quaisquer motivos e 7 animais normais (NC) provenientes do C.C.Z., serviram de grupos controles. Os animais foram avaliados clinica e radiologicamente. Foi colhido líquido sinovial dos animais operados e de outros 20 cães controles submetidos às cirurgias por diferentes causas. Para estudo morfológico, os fragmentos de cartilagens foram corados com H&E e Picrossirius. A gravidade do escore histológico da OA foi quantificada através da coloração com Safranina O. Analisou-se citocinas próinflamatórias (IL-6, TNF-alfa) e a quimiocina CCL2/MCP-1 nos líquidos sinoviais. RESULTADOS: Todos os cães tinham o teste de movimento da gaveta e exame de compressão da mesa tibial positivos. Achados radiográficos correlacionaram-se com maior tempo de RLCCr. Cartilagem articular de animais normais (NC) exibiram superfície preservada, disposição ordenada dos condrócitos e integridade da rede de colágeno. Exames histológicos em animais do grupo RLCCr < 20 mostraram irregularidades na superfície articular, diminuição no número de condrócitos e remodelamento de fibras de colágeno. No grupo > 20, observou-se osteófitos e irregularidades evidentes nas superfícies articulares. A gravidade do escore de acometimento histológico traduziu-se por intensa diminuição celular na superfície articular, com presença de clusters de condrócitos na região intermediária da cartilagem e total desorganização da rede de fibras de colágeno. A quimiocina CCL2/MCP-1 esteve aumentada no grupo com menos de 20 dias de lesão, enquanto a IL-6 foi mais expressiva nos animais operados tardiamente. CONCLUSÃO: O modelo experimental espontâneo de OA canino, estudado em dois tempos, é um instrumento original e útil para estudo da patogênese da osteoartrite, além de ter o mérito de preservar a integridade física dos animais de laboratório / INTRODUCTION and OBJECTIVE: Osteoarthritis (OA) is a frequent and severe rheumatic disease of unknown pathogenesis. We described an original experimental model of OA, analyzing the consequences of spontaneous cranial cruciate ligament rupture (RLCCr), occurred at two different times. METHOD: Twenty male animals, younger than 5 years old (20 to 45kg) with RLCCr were submitted to arthrotomy for articular stability and had cartilage fragments removed for analysis. The Group RLCCR < 20 (10 animals) was operated before 20 days and Group RLCCR > 20 (10 animals) after 20 days of beginning of lesion. Seven animals with pre-existent OA which died without any reason, and 7 normal animals (NC) from Service of Zoonosis Control were the control groups. The animals were submitted to clinical and radiological evaluations. Synovial fluid were collected from operated dogs and from another 20 control animals, submitted for surgical procedures for any reason. For the morphological study, the cartilage fragments were stained with H&E and Picrossirus. The score for OA severity was quantified using Safranin-O staining. Inflammatory cytokines (IL-6 and TNF alfa) and chemiokine CCL2/MCP-1 were measured in sinovial fluid. RESULTS: At physical examination, all the dogs had positive drawer and the tibial plateau compression tests. Knee Radiographic data showed that narrowing of joint space, osteophytes and erosions were more prominent in Group RLCCr> 20 animals. Articular cartilage of normal animals (NC) revealed preserved cartilage surface, organized disposition of chondrocytes and integrity of collagen net. Histological exams done in animals from Group RLLCr > 20 showed irregularities on articular surface, reduction of the number of chondrocytes and collagen fibers remodeling. Animals from Group RLCCR > 20 exhibited deep fibrillations, presence of chondrocytes clusters at intermediate area of cartilage, osteophytes and and total disorganization of the collagen fibers net. Chemiokine CCL2/MCP-1 was found overexpressed in dogs operated less than 20 days, while IL-6 was increased in late surgical group. CONCLUSION: The spontaneous model of canine RLCCr, studied at two distinct times, is an original and useful tool to understand pathogenesis of OA. Furthermore, the procedure preserves the animal integrity, becoming an Ethical laboratorial procedure
|
172 |
Estudo da osteoartrose em joelhos de cães secundária à ruptura do ligamento cruzado cranial / Study of the osteoarthitis in knees of dogs secondary to cranial cruciate ligament rupture in dogsAnderson Coutinho da Silva 18 March 2009 (has links)
INTRODUÇÃO e OBJETIVO: A osteoartrite (OA) embora frequente tem patogênese incerta em humanos. Descrevemos modelo experimental original de OA em cães, analisando em dois tempos diferentes as consequências da Ruptura Espontânea do Ligamento Cruzado Cranial (RLCCr). MÉTODOS: Vinte animais machos com menos de 5 anos ( 20 a 45 Kg) com RLCCr submetidos à artrotomia para estabilização articular tiveram fragmentos articulares removidos para análise. O grupo RLCCr < 20 (10 animais) foi operado antes dos vinte dias e o grupo > 20 (10 animais) após 20 dias do início da lesão. Sete animais com OA pré-existente (OA) que morreram por quaisquer motivos e 7 animais normais (NC) provenientes do C.C.Z., serviram de grupos controles. Os animais foram avaliados clinica e radiologicamente. Foi colhido líquido sinovial dos animais operados e de outros 20 cães controles submetidos às cirurgias por diferentes causas. Para estudo morfológico, os fragmentos de cartilagens foram corados com H&E e Picrossirius. A gravidade do escore histológico da OA foi quantificada através da coloração com Safranina O. Analisou-se citocinas próinflamatórias (IL-6, TNF-alfa) e a quimiocina CCL2/MCP-1 nos líquidos sinoviais. RESULTADOS: Todos os cães tinham o teste de movimento da gaveta e exame de compressão da mesa tibial positivos. Achados radiográficos correlacionaram-se com maior tempo de RLCCr. Cartilagem articular de animais normais (NC) exibiram superfície preservada, disposição ordenada dos condrócitos e integridade da rede de colágeno. Exames histológicos em animais do grupo RLCCr < 20 mostraram irregularidades na superfície articular, diminuição no número de condrócitos e remodelamento de fibras de colágeno. No grupo > 20, observou-se osteófitos e irregularidades evidentes nas superfícies articulares. A gravidade do escore de acometimento histológico traduziu-se por intensa diminuição celular na superfície articular, com presença de clusters de condrócitos na região intermediária da cartilagem e total desorganização da rede de fibras de colágeno. A quimiocina CCL2/MCP-1 esteve aumentada no grupo com menos de 20 dias de lesão, enquanto a IL-6 foi mais expressiva nos animais operados tardiamente. CONCLUSÃO: O modelo experimental espontâneo de OA canino, estudado em dois tempos, é um instrumento original e útil para estudo da patogênese da osteoartrite, além de ter o mérito de preservar a integridade física dos animais de laboratório / INTRODUCTION and OBJECTIVE: Osteoarthritis (OA) is a frequent and severe rheumatic disease of unknown pathogenesis. We described an original experimental model of OA, analyzing the consequences of spontaneous cranial cruciate ligament rupture (RLCCr), occurred at two different times. METHOD: Twenty male animals, younger than 5 years old (20 to 45kg) with RLCCr were submitted to arthrotomy for articular stability and had cartilage fragments removed for analysis. The Group RLCCR < 20 (10 animals) was operated before 20 days and Group RLCCR > 20 (10 animals) after 20 days of beginning of lesion. Seven animals with pre-existent OA which died without any reason, and 7 normal animals (NC) from Service of Zoonosis Control were the control groups. The animals were submitted to clinical and radiological evaluations. Synovial fluid were collected from operated dogs and from another 20 control animals, submitted for surgical procedures for any reason. For the morphological study, the cartilage fragments were stained with H&E and Picrossirus. The score for OA severity was quantified using Safranin-O staining. Inflammatory cytokines (IL-6 and TNF alfa) and chemiokine CCL2/MCP-1 were measured in sinovial fluid. RESULTS: At physical examination, all the dogs had positive drawer and the tibial plateau compression tests. Knee Radiographic data showed that narrowing of joint space, osteophytes and erosions were more prominent in Group RLCCr> 20 animals. Articular cartilage of normal animals (NC) revealed preserved cartilage surface, organized disposition of chondrocytes and integrity of collagen net. Histological exams done in animals from Group RLLCr > 20 showed irregularities on articular surface, reduction of the number of chondrocytes and collagen fibers remodeling. Animals from Group RLCCR > 20 exhibited deep fibrillations, presence of chondrocytes clusters at intermediate area of cartilage, osteophytes and and total disorganization of the collagen fibers net. Chemiokine CCL2/MCP-1 was found overexpressed in dogs operated less than 20 days, while IL-6 was increased in late surgical group. CONCLUSION: The spontaneous model of canine RLCCr, studied at two distinct times, is an original and useful tool to understand pathogenesis of OA. Furthermore, the procedure preserves the animal integrity, becoming an Ethical laboratorial procedure
|
173 |
Développement et évaluation de nouvelles formulations à libération prolongée à base de microparticules de PLGA en vue d'une administration intra-articulaire dans le traitement de pathologies inflammatoires / Development and evaluation of new PLGA microparticles controlled-release formulations for an intraarticular delivery in inflammatory diseases.Gaignaux, Amélie 25 November 2013 (has links)
L’arthrose et l’arthrite rhumatoïde sont deux pathologies articulaires caractérisées par la dégradation du cartilage articulaire, subséquente à la production de divers médiateurs inflammatoires. Le traitement de ces pathologies se limite généralement à soulager le patient des épisodes douloureux et inflammatoires et à améliorer sa qualité de vie. Dans le cas de l’arthrose, peu de traitements permettent d’enrayer significativement l’évolution de la dégradation du cartilage et donc de la maladie. Par contre, l’arthrite rhumatoïde peut être efficacement ralentie grâce à l’administration de certaines molécules. Néanmoins, ces traitements n’ont généralement montré qu’une efficacité à court-terme, requérant une administration fréquente. L’objectif de ce travail repose donc sur l’élaboration de nouvelles options thérapeutiques permettant de réduire la fréquence d’administration ainsi que les effets indésirables des traitements actuels. La délivrance de molécules en intra-articulaire associée à une libération prolongée offre l’avantage d’exposer les sites directement impliqués dans l’évolution de la maladie à une ou plusieurs molécules efficaces contre l’inflammation et la douleur, et aidant à la régénération du cartilage, durant plusieurs semaines, voire des mois.<p>Des microparticules de PLGA chargées en clonidine ou en bétaméthasone ont donc été optimisées afin d’obtenir des efficacités d’encapsulation appréciables (clonidine HCl :EE ≈ 20% ;dipropionate de bétaméthasone :EE ≈ 70%), une taille adaptée à l’administration intra-articulaire (12 – 38 µm) et une libération de la molécule s’échelonnant sur 5 à 8 semaines. La libération prolongée de la clonidine implique des mécanismes de diffusion de la molécule ainsi que de dégradation/érosion du polymère. Au vu de l’absence de réaction inflammatoire, les microparticules développées sont correctement tolérées par les chondrocytes, synoviocytes, PBMC et neutrophiles, principales cellules impliquées dans les mécanismes inflammatoires de l’arthrose et de l’arthrite rhumatoïde. L’évaluation de l’efficacité anti-inflammatoire des microparticules vides et chargées en clonidine ou en bétaméthasone via l’étude de l’expression et de la sécrétion de différents médiateurs de l’inflammation a permis d’aboutir à plusieurs conclusions :(i) les microparticules vides sont associées à un effet anti-inflammatoire, (ii) les microparticules chargées en clonidine n’ont pas montré d’activité anti-inflammatoire propre pouvant être attribuée à la clonidine, et (iii) les microparticules de bétaméthasone ont confirmé l’effet anti-inflammatoire de la bétaméthasone. Enfin, l’étude de la toxicité des principes actifs et microparticules vides ou chargées a montré une toxicité significative de la clonidine sur les synoviocytes. Néanmoins, l’encapsulation des principes actifs dans les microparticules de PLGA a permis d’éliminer cette toxicité, protégeant donc efficacement les cellules articulaires.<p>Les microparticules développées permettent alors d’envisager l’encapsulation d’autres molécules anti-inflammatoires ou une combinaison de molécules ayant des effets complémentaires (anti-inflammatoire et antidouleur). L’utilisation de la clonidine dans ces indications devra être réévaluée en étudiant de façon approfondie son efficacité dans la douleur. / Both osteoarthritis and rheumatoid arthritis are articular diseases characterized by the degeneration of the joint cartilage, resulting from the production of various inflammatory mediators. The current treatment of these diseases is restricted to alleviate the painful and inflammatory episodes of the patients and to improve its quality of life. In osteoarthritic patients, few treatments allow to significantly stop the evolution of the degradation of the cartilage and, consequently, the disease. In rheumatoid arthritis, the evolution can be slowed down following the administration of some drugs. Nevertheless, these treatments are often associated to a short-term efficacy. The objective of this work is to develop new therapeutic options that allow to reduce the frequency of administration and the side effects of the current treatments. The intraarticular delivery combined to controlled-release presents the advantage to expose the sites directly involved in the evolution of the disease to one or more molecules effective to relieve the pain, inflammation and to help the regeneration of the cartilage.<p>Clonidine or betamethasone-loaded PLGA microparticles were optimized to reach suitable encapsulation efficiencies (clonidine HCl: EE ≈ 20%; betamethasone dipropionate: EE ≈ 70%), an appropriate size for an intraarticular delivery (12 – 38 µm) and a controlled-release of the molecule over 5 to 8 weeks. The release of clonidine implies mechanisms of diffusion and degradation/erosion of the polymer. Given the absence of an inflammatory reaction, the developed microparticles were properly tolerated by the chondrocytes, synoviocytes, PMBC and neutrophils, which are the main cells involved in the inflammatory reaction of osteoarthritis and rheumatoid arthritis. The assessment of the anti-inflammatory efficacy of the drug-free and drug-loaded microparticles through the evaluation of the expression and the secretion of various inflammatory mediators allowed to draw several conclusions: (i) drug-free microparticles were associated to an anti-inflammatory effect, (ii) clonidine-loaded microparticles did not show any anti-inflammatory activity that could be attributed to clonidine, and (iii) betamethasone- loaded microparticles confirmed the anti-inflammatory effect of betamethasone. Finally, the evaluation of the toxicity of the drugs and microparticles showed a significant toxicity of clonidine against synoviocytes. Nevertheless, the encapsulation of the drugs in PLGA microparticles induced the suppression of this toxicity, protecting in this way the articular cells. <p>Entrapping other anti-inflammatory molecules or a combination of molecules with complementary effects (anti-inflammatory and anti-nociceptive drugs) in the PLGA microparticles developed has to be considered. Moreover, the use of clonidine in these indications has to be reassessed by a thorough study of its anti-nociceptive potential.<p><p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
|
174 |
GLUCOCORTICOID-INDUCED CHONDROCYTE CYTOTOXICITY AT DOSES RECOMMENDED FOR INTRA-ARTICULAR THERAPY IN HORSESZhu, Wenying 01 January 2015 (has links)
Intra-articular glucocorticoid injections are commonly used to treat synovitis and osteoarthritis in horses. These agents are highly effective at relieving pain, swelling, and other symptoms of joint inflammation. The drugs also have therapeutic benefits by down regulating the expression of cytokines and protease enzymes that participate in the degradation of articular cartilage. However, detrimental effects on chondrocyte function and cell viability that is independent of osteoarthritis pathogenesis have been described and linked to glucocorticoid use. These side effects are both drug- and dose-dependent. This study tested the hypothesis that manufacture recommended dosage levels of methylprednisolone, betamethasone, and triamcinolone that are widely used in equine clinical practice are cytotoxic to articular chondrocytes. Drug-induced chondrocyte cytotoxicity was evaluated in monolayer cultures, cartilage explants, and equine fetlock joints. Total RNA was isolated from control and IL-1β stimulated primary chondrocytes and synoviocytes in culture. Changes in steady state mRNA for targeted gene transcripts related to inflammation and normal cell function were measured using reverse transcription and quantitative PCR. Inducible nitric oxide synthase activity was evaluated using nitrite production. Drug-induced chondrocyte cytotoxicity occurred at drug dosage levels frequently used in equine clinical practice. Both drug- and dose-dependent effects on chondrocyte and synoviocyte gene expression were observed. Maximum anti-inflammatory activities for the glucocorticoids were observed at in vitro concentrations below manufacturer-recommended levels. Results from this study suggest that lower glucocorticoid dose ranges for intra-articular therapy in horses should be validated to maximize the ratio of their therapeutically beneficial anti-inflammatory efficacy against detrimental effects on cell function and viability.
|
175 |
Multi-photon microscopy of cartilageMansfield, Jessica January 2008 (has links)
Articular cartilage has been imaged using the following multi-photon modalities: Second Harmonic Generation (SHG), Two-photon Fluorescence (TPF) and Coherent Anti-Stokes Raman Scattering (CARS). A simple epi detection microscope was constructed for SHG and TPF imaging in the early stages of this research. Later the imaging was transferred to a new microscope system which allowed simultaneous forwards and epi detection and combined CARS imaging with TPF and SHG. Multiphoton spectroscopic studies were conducted on both intact tissue samples and the major components of the extracellular matrix, in order to identify sources of TPF. Fluorescence was detected from type II collagen, elastin and samples of purified collagen and elastin crosslinks. Age related glycation crosslinks of collagen may be a significant source of TPF. No fluorescence was detected from proteoglycans. In intact, unfixed healthy articular cartilage the cells were observed via CARS, surrounded in their pericellular matrix which is characterised by an increase in TPF. The collagen of the extra cellular matrix showed up clearly in the SHG images. Diseased cartilage was also imaged revealing microscopic lesion at the articular surface in early osteoarthritis and highly fibrous collagen structures and cell clusters in more advanced degeneration. In young healthy cartilage a network of elastin fibres were found lying parallel to the articular surface in the most superficial 50μm of the tissue. Regional variations in these fibres were also investigated. The fibres appeared mainly long and straight suggesting that they may be under tension, further work is needed to identify whether they have a mechanical function. The polarization sensitivity of the SHG from collagen has been investigated for both cartilage and tendon. In the most superficial tissue these measurements can be used directly to determine the collagen fibre orientation. However at increasing depths the effects of biattenuation and birefringence must be considered. Healthy cartilage has a characteristic pattern of polarization sensitivity with depth and this changes at lesions indicating a disruption of the normal collagen architecture. The methods developed in this thesis demonstrate the use of non-linear microscopy to visualise the structure of the extracellular matrix and cells in intact unstained tissue. They should also be appropriate in many areas of cell and matrix biology.
|
176 |
Efeitos da remoção do disco e cartilagem articular no crescimento e microarquitetura óssea da mandíbula de ratos: análise por microtomografia / Effects of articular disc and cartilage removal on mandible of growing rats: a micro-computed tomography studyAoki, Eduardo Massaharu 17 February 2016 (has links)
Alterações na articulação emporomandibular (ATM) comumente geram desequilíbrios musculares que estão associados à alterações no tecido ósseo. Esta articulação pode sofrer a influência de traumas, fatores congênitos ou desordens de crescimento. Estudos sobre alterações de crescimento do complexo maxilomandibular decorrentes de problemas da ATM são escassos. O objetivo deste trabalho foi avaliar por meio da microtomografia os efeitos da remoção do disco articular e a remoção conjugada do disco e cartilagem articular no crescimento e na microarquitetura óssea da mandíbula de ratos. Trinta ratos da raça Wistar com um mês de idade foram divididos em três grupos: CTR (controle operado); RD (remoção de disco articular) e RDC (remoção conjugada do disco e cartilagem articular). Apenas o lado direito foi operado; o lado esquerdo permaneceu intacto. Após dois meses de acompanhamento, os ratos foram sacrificados e as hemimandíbulas escaneadas em microtomógrafo A remoção do disco articular e a remoção conjugada do disco e cartilagem articular alteram o volume e microestrutura do osso trabecular da mandíbula de ratos jovens. Estas duas intervenções provocaram uma queda na qualidade de parâmetros da microestrutura do trabeculado do processo angular e diminuição do crescimento da hemimandíbula do lado operado. / Changes in the temporomandibular joint (TMJ) lead to muscle dysfunctions that are associated with bone changes. This joint region can be influenced by trauma, congenital factors or growth disorders. Studies linking TMJ problems and growth alterations are scarce. The aim of this study was to evaluate the effects of the articular disc removal or articular disc and cartilage removal on the bone microarchitecture and mandibular growth of young rats. Thirty Wistar rats (one month old) were divided into three groups: CTR (sham operated); RD (disc removal) and RDC (disc and cartilage removal). Only the right side was operated, keeping the left side intact. After two months, the rats were sacrificed and the mandibles scanned on micro-CT for quantitative analysis. Some microstructural parameters were altered by the disc removal or disc and cartilage removal. The right side presented lower growth than the left side.
|
177 |
Activation of hypoxia inducible factor-1α enhances articular cartilage regeneration: 激活低氧诱导因子-1α促进关节软骨再生 / 激活低氧诱导因子-1α促进关节软骨再生 / CUHK electronic theses & dissertations collection / Activation of hypoxia inducible factor-1α enhances articular cartilage regeneration: Ji huo di yang you dao yin zi-1α cu jin guan jie ruan gu zai sheng / Ji huo di yang you dao yin zi-1α cu jin guan jie ruan gu zai shengJanuary 2015 (has links)
Background: The impairment of articular cartilage caused by trauma or degenerative pathology is one of the most challenging issues in clinical Orthopedics because of the limited intrinsic regenerative capability of this tissue. Hypoxia is a major stimulus to initiate gene programs in regulating chondrogenic lineage cell functions during cartilage development and regeneration. Hypoxia-inducible factor-1α (HIF-1α), the key transcription factor to sense oxygen fluctuations of cells, is abundantly expressed in the cartilage and considered as a potential therapeutic target for cartilage tissue homeostasis or repair. However, the molecular mechanisms and therapeutic efficacy of targeting the HIF-1α pathway remain to be well defined. / Methods: Osteochondral defect mouse model was generated to examine the hypoxia states during articular cartilage repair with the Hypoxyprobe. Specific HIF-1α deletion in the repairing tissue was established to determine its regulatory role during cartilage restoration. Deferoxamine (DFO), stabilizing HIF-1α from proteolysis by inhibiting the prolyl hydroxylases (PHDs), was investigated systemically on the function of chondroprogenitors and mesenchymal stem cells (MSCs) in vitro. Alcian blue staining determined the proteoglycan synthesis. HIF components, chondrogenic related genes and proteins were examined by quantitative PCR, western blotting and immunohistochemistry, respectively. The proliferation, differentiation and migration assays were performed to determine the influence of DFO onchondroprogenitors and MSCs. The recruitment or engraftment of MSCs in the injured site was traced by transplantation of GFP-labeled MSCs adjacent to the defect region, and examined by immunofluorescence staining. DFO incorporated in a 3D alginate-gelfoam scaffold was analyzed for its therapeutic effects on the articular cartilage regeneration. At 6 and 12 weeks following surgery, the cartilage tissue repair was scored and the expression of proliferating cell nuclear antigen (PCNA), Sox9 and collagen typeⅡ(Col2) was examined by immunohistochemistry. / Results: Hypoxia states and the expression of HIF-1α in the repair tissue were ubiquitously existed in the osteochondral defect model. DFO significantly upregulated HIF-1α expression and nuclear localization, and increased the levels of PHDs. DFO increased chondroprogenitor cell proliferation as visualized by colony forming unit assay, which was in accord with the upregulation of cyclin D1. DFO significantly induced chondrogenic differentiation indexed by increased Col2 and Sox9 protein expression and elevated proteoglycan synthesis. With sustained upregulation of HIF-1α DFO was supposed to effectively promote chondrogenesis in mimic of hypoxic microenvironment. DFO also increased the migration of MSCs, and elevated the expression of tissue inhibitor metalloproteinase-3 (TIMP3) through transcriptional control by HIF-1α. Furthermore, DFO initiated MSCs membrane protrusion through regulating the expression and interaction of the key focal adhesion proteins vinculin and paxillin. In vivo study showed that DFO dramatically facilitated the recruitment and functional engraftment of MSCs to the lesion site compared with the controls. Alginate-gelfoam scaffold incorporated with DFO enhanced articular cartilage repair through increasing chondrogenic cell proliferation, differentiation and proteoglycan synthesis. The enhanced therapeutic effect of DFO on articular cartilage repair was eliminated following HIF-1α deletion in the repairing cells of the cartilage lesion. The results indicate that the positive effect of DFO on articular cartilage repair is at least partially mediated by HIF-1α. / Conclusion: HIF-1α is an essential mediator during articular cartilage repair. Activation of HIF-1α by PHD inhibitor DFO increases chondroprogenitor cell proliferation, differentiation and migration in vitro. DFO enhances articular cartilage repair through coordinating MSCs migration, chondrogenic differentiation and functional engraftment. The results provide proof of principle that targeting the HIF-1α pathway may serve as a novel approach for promoting articular cartilage regeneration. / 背景:关节软骨自愈能力非常有限,由创伤或退行性病变引起关节软骨损伤的治疗是骨科领域的一大难题。在软骨发育和再生过程中,低氧条件对启动基因表达及调控软骨系细胞功能至关重要。低氧诱导因子-1α(HIF-1α)作为关键的转录因子可感应细胞外氧含量变化,广泛存在于软骨组织中,并被认为对维持软骨组织内稳态及促进软骨修复有重要作用。然而,以HIF-1α 通路为靶点的小分子靶向药物的分子机制与治疗效果尚不明确。 / 方法:本课题系统性地研究了HIF 信号通路激活剂去铁胺(DFO)对软骨损伤的作用。我们构建了骨软骨缺损模型,应用缺氧探针检测了软骨缺损过程中修复组织的低氧状态,并特异性敲除软骨修复组织中HIF-1α 表达,研究其在软骨再生过程中的调节作用。我们用阿利新蓝染色检测软骨细胞蛋白多糖的合成及分泌。通过实时荧光定量聚合酶链式反应,免疫印迹以及免疫组化等方法检测了HIF 家族成员和软骨分化标志物的基因和蛋白含量变化。通过增殖及迁移实验检测了DFO 对软骨细胞或者骨髓间充质干细胞(MSC)功能的影响。另外,我们还将GFP 标记的MSC 注射到与小鼠软骨缺损区域相邻的软骨下骨中,观察其在软骨缺损模型中的募集及功能性植入。我们以藻酸盐和明胶海绵复合物为给药系统,包载DFO 并作用于关节软骨缺损部位。术后6 周及12 周取材,以番红O 染色检测DFO 对小鼠关节软骨缺损的修复效果,并通过免疫组化检测增殖细胞核抗原(PCNA),Sox9 以及Col2 等蛋白的表达。 / 结果:低氧状态和HIF-1α 在骨软骨缺损模型中的软骨缺损区域广泛存在和表达。DFO 显著提高了HIF-1α 蛋白表达及转运入核,增加了脯氨酸羟化酶(PHD)表达。在软骨祖细胞中,DFO 可提高其增殖、克隆能力,并增加周期蛋白D1的表达。同时,DFO 能明显促进软骨祖细胞分化,增加软骨分化标志物基因以及Sox9 和Col2 蛋白表达,提高蛋白多糖分泌。通过持续性激活HIF-1α,DFO可模仿低氧微环境来提高软骨细胞增殖、分化能力。分子机制研究发现,DFO激活HIF-1α 后,HIF-1α 作用在靶基因金属蛋白酶组织抑制剂-3 启动子上,增加其转录和蛋白表达,进而提高MSC 的迁移能力。另外,激活HIF-1α 蛋白可增加黏着斑蛋白,桩蛋白表达以及它们的相互作用,促进MSC 伪足延伸。体内实验中,通过追踪小鼠体内GFP 标记的MSC 发现, DFO 可在软骨损伤早期(7 天及14 天)提高受损部位MSC 募集数量,并促进其向软骨细胞谱系分化。通过增加软骨系细胞增殖、分化、蛋白多糖合成,包载DFO 的藻酸盐明胶海绵给药系统显著提高了软骨缺损组织的修复效果。而在软骨修复组织中特异性敲除HIF-1α 蛋白后,明显降低了DFO 对软骨缺损的治疗效果,提示DFO对软骨修复的作用至少部分由HIF-1α 介导。 / 结论:HIF-1α 是关节软骨修复过程中的重要调控因子。PHD 抑制剂DFO 可以激活HIF-1α 表达,增加软骨祖细胞增殖、分化和迁移。DFO 通过调控MSC 募集、软骨细胞谱系分化以及功能性植入,明显改善关节软骨再生修复的效果。本研究为HIF-1α 信号通路作为一种新的治疗靶点促进关节软骨再生提供了重要证据。 / Shu, Yinglan. / Thesis Ph.D. Chinese University of Hong Kong 2015. / Includes bibliographical references (leaves 155-181). / Abstracts also in Chinese. / Title from PDF title page (viewed on 09, September, 2016). / Shu, Yinglan. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
|
178 |
Efeitos da remoção do disco e cartilagem articular no crescimento e microarquitetura óssea da mandíbula de ratos: análise por microtomografia / Effects of articular disc and cartilage removal on mandible of growing rats: a micro-computed tomography studyEduardo Massaharu Aoki 17 February 2016 (has links)
Alterações na articulação emporomandibular (ATM) comumente geram desequilíbrios musculares que estão associados à alterações no tecido ósseo. Esta articulação pode sofrer a influência de traumas, fatores congênitos ou desordens de crescimento. Estudos sobre alterações de crescimento do complexo maxilomandibular decorrentes de problemas da ATM são escassos. O objetivo deste trabalho foi avaliar por meio da microtomografia os efeitos da remoção do disco articular e a remoção conjugada do disco e cartilagem articular no crescimento e na microarquitetura óssea da mandíbula de ratos. Trinta ratos da raça Wistar com um mês de idade foram divididos em três grupos: CTR (controle operado); RD (remoção de disco articular) e RDC (remoção conjugada do disco e cartilagem articular). Apenas o lado direito foi operado; o lado esquerdo permaneceu intacto. Após dois meses de acompanhamento, os ratos foram sacrificados e as hemimandíbulas escaneadas em microtomógrafo A remoção do disco articular e a remoção conjugada do disco e cartilagem articular alteram o volume e microestrutura do osso trabecular da mandíbula de ratos jovens. Estas duas intervenções provocaram uma queda na qualidade de parâmetros da microestrutura do trabeculado do processo angular e diminuição do crescimento da hemimandíbula do lado operado. / Changes in the temporomandibular joint (TMJ) lead to muscle dysfunctions that are associated with bone changes. This joint region can be influenced by trauma, congenital factors or growth disorders. Studies linking TMJ problems and growth alterations are scarce. The aim of this study was to evaluate the effects of the articular disc removal or articular disc and cartilage removal on the bone microarchitecture and mandibular growth of young rats. Thirty Wistar rats (one month old) were divided into three groups: CTR (sham operated); RD (disc removal) and RDC (disc and cartilage removal). Only the right side was operated, keeping the left side intact. After two months, the rats were sacrificed and the mandibles scanned on micro-CT for quantitative analysis. Some microstructural parameters were altered by the disc removal or disc and cartilage removal. The right side presented lower growth than the left side.
|
179 |
Mechanotransduction in Engineered Cartilaginous Tissues: In Vitro Oscillatory Tensile LoadingVanderploeg, Eric James 19 May 2006 (has links)
Disease and degeneration of articular cartilage and fibrocartilage tissues severely compromise the quality of life for millions of people. Although current surgical repair techniques can address symptoms in the short term, they do not adequately treat degenerative joint diseases such as osteoarthritis. Thus, novel tissue engineering strategies may be necessary to combat disease progression and repair or replace damaged tissue. Both articular cartilage and the meniscal fibrocartilage in the knee joint are subjected to a complex mechanical environment consisting of compressive, shear, and tensile forces. Therefore, engineered replacement tissues must be both mechanically and biologically competent to function after implantation. The goal of this work was to investigate the effects of oscillatory tensile loading on three dimensional engineered cartilaginous tissues in an effort to elucidate important aspects of chondrocyte and fibrochondrocyte mechanobiology.
To investigate the metabolic responses of articular chondrocytes and meniscal fibrochondrocytes to oscillatory tensile loading, various protocols were used to identify stimulatory parameters. Several days of continuously applied tensile loading inhibited extracellular matrix metabolism, whereas short durations and intermittently applied loading could stimulate matrix production. Subpopulations of chondrocytes, separated based on their zonal origin within the tissue, differentially responded to tensile loading. Proteoglycan synthesis was enhanced in superficial zone cells, but the molecular structure of these molecules was not affected. In contrast, neither total proteoglycan nor protein synthesis levels of middle and deep zone chondrocytes were substantially affected by tensile loading; however, the sizes of these new matrix molecules were altered. Up to 14 days of intermittently applied oscillatory tensile loading induced modest increases in construct mechanical properties, but longer durations adversely affected these mechanical properties and increased degradative enzyme activity. These results provide insights into cartilage and fibrocartilage mechanobiology by elucidating cellular responses to tensile mechanical stimulation, which previously had not been widely explored for these tissues. Understanding the role that mechanical stimuli such as tension can play in the generation of engineered cartilaginous tissues will further the goal of developing successful treatment strategies for degenerative joint diseases.
|
180 |
Engineering zonally organized articular cartilageNguyen, Lonnissa Hong 14 October 2011 (has links)
Cartilage regeneration is one of the most widely studied areas in tissue-engineering. Despite significant progress, most efforts to date have only focused on generating homogenous tissues whose bulk properties are similar to articular cartilage. However, anatomically and functionally, articular cartilage consists of four spatially distinct regions: the superficial, transitional, deep, and calcified zones. Each zone is characterized by unique extra-cellular matrix (ECM) compositions, mechanical properties, and cellular organization. The ECM is primarily composed of type II collagen and glycosaminoglycans (GAGs), whose relative concentrations vary between zones and therefore lead to distinctive mechanical properties.
One of the major unsolved challenges in engineering cartilage has been the inability to regenerate tissue that mimics the zonal architecture of articular cartilage. Recent studies have attempted to imitate this spatial organization using zone-specific chondrocytes isolated from donor animal cartilage. Directed differentiation of a single stem population into zonally organized native-like articular cartilage has not yet been reported.
This dissertation reports that hydrogels, incorporating both synthetic and natural polymers as well as cell-induced degradability, are suitable for generating zone-specific chondrogenic phenotypes from a single MSC population. Specifically, cues provided from the unique combinations of chondroitin sulfate (CS), hyaluronic acid (HA), and MMP-sensitive peptide (MMP-pep) within a PEG-based hydrogel, direct the chondrogenic differentiation of MSCs. The findings of this dissertation demonstrate the capability of creating native-like and mechanically relevant articular cartilage consisting of zone specific layers. This ability provides a new direction in cartilage tissue engineering and could be invaluable for cartilage repair if incorporated with current minimally invasive surgical techniques. / text
|
Page generated in 0.1022 seconds