251 |
Classificação e localização de faltas em linhas de transmissão usando diferentes arquiteturas de redes neurais artificiais. / Classification and location faults in transmission lines, using different artificial neural networks architectures.Marlim Pereira Menezes 19 August 2008 (has links)
Este trabalho apresenta o desenvolvimento de algoritmos para determinação da estimativa da distância de ocorrência de falta em uma linha de transmissão de alta tensão, em relação a um terminal local, e também a classificação do tipo de falta, utilizando técnicas baseadas em redes neurais artificiais. Os testes e a validação dos algoritmos propostos são feitos a partir de dados simulados para os fasores de tensão e corrente, em regime permanente, com uso da linguagem MATLAB. Os fasores são obtidos com uso de cálculo tradicional de curto e parâmetros reais de uma linha de transmissão conhecida. Em casos reais os fasores seriam obtidos de amostras de tensões e correntes detectadas por dispositivos de proteção localizados nos terminais local e remoto da linha de transmissão em análise. As simulações das redes neurais para a classificação do tipo de falta e para a obtenção da estimativa da distância de falta foram feitas com duas rotinas escritas em MATLAB levando em consideração erros de medição dos fasores. Os resultados obtidos permitem avaliar a eficiência e a precisão dos algoritmos propostos em relação aos já existentes e conhecidos na literatura, e que usam somente equacionamento elétrico. / This work presents the development of algorithms for determination of the estimate of the distance of occurrence of fault in a high voltage transmission line, in relation to a local terminal, and also the classification of the fault type, using techniques based on artificial neural networks. The tests and the validation of the proposed algorithms are made using simulated data for the voltage and current phasors, in steady state, with use of the MATLAB language. The phasors are obtained with use of traditional calculation of short-circuit and real parameters of a known transmission line. In real cases the phasors would be obtained with samples of voltages and currents detected by protection devices located in the local and remote terminals of the transmission line in analysis. The simulations of the neural networks for the classification of the fault type and for the obtaining the estimate of the fault distance were done with two routines written in MATLAB taking into account measurement errors of the phasors. The obtained results allow to evaluate the efficiency and the accuracy of the proposed algorithms in relation to the already existent and known in the literature, and that use only electric equations.
|
252 |
Modelagem matemática e sistemas inteligentes para predição do comportamento alimentar de suínos nas fases de crescimento e terminação / mathematical modeling and intelligent systems for predicting feeding behaviour of growing-finishing pigsGuilherme Farias Tavares 06 February 2017 (has links)
A suinocultura é uma atividade de grande importância em termos mundiais e de Brasil. Entretanto, por serem animais homeotérmicos, algumas alterações no ambiente térmico de alojamento podem alterar suas respostas fisiológicas e comportamentais para manutenção da temperatura interna. Portanto, o objetivo dessa pesquisa foi avaliar o comportamento alimentar de suínos, mediante a influência do ambiente térmico, nas fases de crescimento e terminação para diferentes linhagens comerciais e sexo. Além disso, buscou-se o desenvolvimento de modelos matemáticos e sistemas inteligentes para predição do tempo em alimentação (TM, min dia-1) dos suínos. Os dados foram coletados em uma granja experimental de suínos, localizada na cidade de Clay Center, Nebraska, Estados Unidos. O período experimental contemplou duas estações durante o ano 2015/2016 (verão e inverno), totalizando 63 dias (9 semanas) de informações coletadas para cada estação. Os animais alojados foram de três linhagens comerciais distintas: Landrace, Duroc e Yorkshire. Cada baia apresentava composição mista, sendo alojados 40 animais de diferentes linhagens comerciais e sexo. No total, foram confinados 240 animais, sendo 80 animais para cada linhagem comercial entre machos castrados e fêmeas. Foram registrados dados de temperatura do ar (Tar, °C), temperatura do ponto de orvalho (Tpo, °C) e umidade relativa do ar (UR, %) a cada 5 minutos no interior da instalação. Para TM, os dados foram coletados e registrados a cada 20 segundos por meio de um sistema de coleta de dados por rádio frequência. O conforto térmico foi analisado a partir do Índice de Temperatura e Umidade (ITU) e a Entalpia Específica (H, kJ kg-1 de ar seco). Para avaliar a relação entre o ambiente térmico e TM, foi utilizada estatística multivariada por meio de análise de componentes principais (ACP) e agrupamento para obtenção de padrões e seleção de variáveis para entrada nos modelos. O modelo fuzzy e as redes neurais artificias foram desenvolvidos em ambiente MATLAB® R2015a por meio dos toolboxes Fuzzy e Neural Network, com o objetivo de predizer TM, tendo como variáveis de entrada: linhagem comercial, sexo, idade e ITU. De uma maneira geral, as médias de Tar estiveram dentro da zona de termoneutralidade (ZCT) em todo período experimental, sendo que apenas a UR apresentou valores abaixo da UR crítica inferior. Para o ITU, apenas no verão foram encontrados valores acima da ZCT, entretanto, esses valores estiveram abaixo do ITU crítico superior. Diante da análise dos resultados, pôde-se observar em relação ao comportamento alimentar, que a fêmea Landrace apresentou o menor tempo em alimentação com médias de 42,19 min dia-1 e 43,73 min dia-1 para o inverno e verão, respectivamente, seguido do macho castrado de mesma linhagem. Enquanto as demais linhagens apresentaram valores acima de 60 min dia-1. Não foi observado correlação linear significativa entre o ambiente térmico e TM uma vez que os animais estiveram dentro de sua ZCT ao longo de todo período experimental, indicando que o comportamento alimentar foi influenciado principalmente pelos fatores homeostáticos e cognitivos-hedônicos. A estatística multivariada dividiu os animais em 8 grupos. Foi observado que animais de linhagens e sexos distintos se comportaram da mesma maneira, dificultando a modelagem matemática. Entretanto, alguns grupos apresentaram maior quantidade de animais de determinada linhagem e sexo, sendo estes utilizados como \"grupos padrão\" para o desenvolvimento do modelo fuzzy e a rede neural artificial. O modelo fuzzy apresentou R2 de 0,858 quando utilizado os dados do grupo padrão, entretanto, para todos os valores o R2 foi de 0,549. Já a rede neural apresentou um R2 de 0,611 para os dados completos e R2 de 0,914 para o \"grupo padrão\". Portanto, a rede neural artificial mostrou-se como uma ferramenta de maior precisão e acurácia na predição do comportamento alimentar de suínos nas fases de crescimento e terminação. / The swine production in an activity of great importance to Brazil and to the world. However, because they maintain a constant body temperature and, alterations in the thermic accommodation environment can directly affect their physiological and behavioral responses for maintaining the internal temperature. Thus, the objective of this study was to access the feeding behavior of growing-finishing pigs of different sirelines and gender and its relationship with climate variables (thermic environment). Furthermore, mathematical models based on classic logic was developed as well as an intelligent system for predicting the total time spent eating (TM, min day -1). The data was collected in an experimental farm located in Clay Center, Nebraska, United States. The experimental period contemplated two seasons (summer and winter), totalizing 63 days (9 weeks) of information collected for each season. The housed animals were from three different commercial sirelines: Landrace, Duroc and Yorkshire. Each pen presented a mix composition, being housed 40 animals of different sirelines and gender. In total, there were 240 housed animals, being 80 animals for each sireline among barrows and gilts. The data registered were air temperature (Tar, °C), dew point temperature (Tpo, °C) and relative humidity of the air (UR, %) every 5 minutes inside the facility. For TM, the data were collected and registered every 20 seconds by a radio frequency data collection system. The thermal comfort was analyzed from the Temperature and Humidity Index (THI) and Specific Enthalpy (H, kJ kg-1 of dry air). In order to evaluate the relationship between the thermic environment and TM, the multivariate statistics through principal component analysis (PCA) and grouping was utilized for obtaining the selection standards of variables to enter in the models. The fuzzy model and the artificial neural networks were developed in a MATLAB® R2015a environment through the Fuzzy and the Neural Network toolboxes with the objective to predict TM, having as entry variables: sireline, gender, age and THI. On the whole, the Tar averages were inside the thermoneutral zone (ZCT), however, these values were below the superior critic THI. In the face of the results analysis, it could be observed in ration to the feeding behavior that the Landrace gilt presented the shortest time eating with averages of 42.19 min day-1 and 43.73 min day-1 for winter and summer respectively followed by the barrow from the same sireline, while the other sirelines presented values above 60 min day-1. It was not observed a significative linear correlation between the thermic environment and TM once the animals were inside their ZCT throughout all the experimentation period, indicating that the feeding behavior was influenced mainly by the homeostatic and cognitivehedonic factors. The multivariate statistics divided the animals in 8 groups, being observed that animals of different sirelines and gender behave the same way throughout the experimentation period, making the mathematical modeling difficult. However, some groups presented a bigger amount of animals of determined sireline and gender, being utilized as \"standard groups\" for the development of the fuzzy model and the artificial neural network. The fuzzy model presented an R2 of 0,858 when utilizing the \"standard group\" data, however, for all the values the R2 was 0.549. In the other hand the neural network presented an R2 of 0.611 for the complete data and an R2 of 0.914 for the \"standard group\". Thus, the artificial neural network appeared to be a tool of a better precision and accuracy when predicting the feeding behavior of pigs on growing-finishing phases.
|
253 |
Evolução estrutural e paramétrica de redes neurais dinâmicas em vida artificial. / Structural and parametric evolution of dynamic neural networks in artificial life.Cesar Gomes Miguel 23 March 2009 (has links)
A evolução de redes neurais artificiais encontra aplicações em diversos campos na área de aprendizado de máquina, em particular, simulações de vida artificial onde uma população de indivíduos controlados por redes neurais se adaptam num ambiente virtual a fim de realizar uma determinada tarefa. Similar ao processo natural pelo qual o comportamento do organismo se modifica filogeneticamente através da complexificação do sistema nervoso, tais simulações oferecem uma nova abordagem sintética no estudo da inteligência, em contraposição aos métodos simbólicos tradicionais. Um recente método, conhecido por NEAT (NeuroEvolution of Augmenting Topologies), é capaz de obter os pesos e a própria topologia de rede neural utilizando algoritmos genéticos. A codificação utilizada pelo NEAT é flexível o suficiente para permitir evolução aberta e arquiteturas neurais arbitrárias. Este trabalho apresenta uma implementação do NEAT que pode ser utilizada em conjunto com um simulador de propósito geral, chamado Breve, formando uma plataforma para experimentos de vida artificial. A implementação proposta também estende o NEAT para lidar com redes neurais dinâmicas, onde o nível de ativação dos neurônios varia continuamente no tempo. Este novo modelo é comparado com o método tradicional numa tarefa clássica de controle não-supervisionado, mostrando um aumento de eficiência na busca pela solução do problema. Os resultados obtidos motivam o uso desta plataforma para experimentos de vida artificial, onde uma população de indivíduos interage continuamente com um ambiente dinâmico, se adaptando ao longo das gerações. / The evolution of artificial neural networks has a wide range of applicability in diverse areas in the field of machine learning, particularly, in artificial life simulations where a population of individuals, controlled by neural networks, adapts in a virtual environment in order to solve a given task. Resembling the natural process in which an organism\'s behavior is subjected to phylogenetic modifications through the complexification of the nervous system, such simulations offer a new synthetic approach in the investigation of intelligence, counter posing traditional symbolic methods. A recent method known as NEAT (NeuroEvolution of Augmenting Topologies), is able to obtain the synaptic weights and the topology with the aid of genetic algorithms. The encoding used by NEAT is flexible enough to allow for open-ended evolution and arbitrary neural architectures. This work presents a NEAT implementation especially suitable to be used with a general purpose simulator known as Breve, constituting a framework for artificial life experiments. The proposed implementation extends NEAT to include dynamical neuron models, where their inner state continuously varies over time. The new model is then compared to the traditional method in a classic unsupervised control benchmark task, showing an efficiency increase while solving the problem. The obtained results motivate the proposed framework for general experiments in artificial life, in which a population of individuals continuously interact with a dynamical environment, adapting through generations.
|
254 |
Redes neurais artificiais : uma alternativa para proteção de linhas de transmissão / Artificial neural networks : an alternative for the protection of transmission linesMário Oleskovicz 10 December 1997 (has links)
Este trabalho apresenta a aplicação de Redes Neurais Artificiais (RNAs) como um classificador de padrões para as operações do relé de distância. As grandezas analisadas referem-se aos valores trifásicos de tensões e correntes do sistema elétrico, incluindo a seqüência zero. Para a obtenção dos valores amostrais da linha de transmissão em condição faltosa, valores estes utilizados como entradas para as arquiteturas de RNAs em seus processos de treinamento e teste, utilizou-se do software Alternative Transients Program - ATP. Para se observar o desempenho do relé de distância implementado, duas formas de análise dos valores trifásicos foram adotadas. Uma utilizando-se como entrada os cinco valores amostrados em meio ciclo pós-falta do sinal analisado e a segunda, pelo emprego da magnitude dos fatores de tensões e correntes, incluindo a seqüência zero. A função da rede neural implementada é de capturar o conhecimento da correta atuação do relé de distância, para posteriormente atuar com melhores resultados frente às situações de operações que por ventura venham a ocorrer. Para criar, treinar (obtenção dos pesos associados como saída) e testar as arquiteturas de RNAs, utilizou-se do software Stuttgard Neural Network Simulator (SNNS). Dos resultados encontrados comenta-se o desempenho do relé de distância implementado frente às duas abordagens anteriormente descritas. Do uso de RNAs como um classificador de padrões, observa-se uma melhora no desempenho do sistema de proteção, alcançando-se uma definição de 96% do comprimento da linha de transmissão como sendo a zona de proteção primária do relé de distância digital. / This work demonstrates the use of Artificial Neural Networks (ANNs) theory as a pattern classifier for a distance relay operation. The approach utilizes the magnitudes of the three phase voltage and current phasors (including the zero sequence) as inputs. The Alternative Transients Program (ATP) software is used to generate data for the transmission line in a faulted condition both for the training process and the tests. Two different types of ANN architecture, concerning the input data, are taken into account. The main objective was to analyse the relay performance considering each of them. One approach utilises the five post-fault samples as inputs. The other one employs the magnitudes of the three phase voltage and current phasors (including the zero sequence) as inputs. The implemented neural network should capture the knowledge for the correct relay operation facing the different network conditions. A comparison of how well the schemes performed is carried out. The Stuttgard Neural Network Simulator (SNNS) was used to create the ANN diagram, train it and obtain the weights as an output. An improvement concerning the use of ANNs for distance protection purposes is found. Through the use of ANN as a pattern classifier, a reach of 96% of the transmission line length as the relay primary protection zone was implemented in this work.
|
255 |
Procedimentos para tornar mais efetivo o uso das redes neurais artificiais em planejamento de transportes. / Alternative procedures to make more effective the application artificial neural network in transportation planning.Charlie Williams Rengifo Bocanegra 05 February 2002 (has links)
O objetivo deste trabalho é explorar procedimentos alternativos capazes de tornar mais efetiva a aplicação, em planejamento de transportes, de modelos desenvolvidos através de redes neurais artificiais (RNA). Pensar, do ponto de vista prático, que um programa de computador seja imprescindível para a fase de treinamento da rede é aceitável, mas depender deste programa também para estimativas e simulações a partir da rede treinada é muito restritivo. Desta forma, o ideal seria obter instrumentos capazes de reproduzir, fora do software de RNA, o comportamento de redes treinadas, integrando a capacidade de predição das RNAs a outros ambientes e ferramentas. Isto ampliaria os recursos de diferentes ferramentas de planejamento, permitindo, por exemplo, análises de sensibilidade mais simples e diretas. Este trabalho será baseado em um modelo já desenvolvido em outra pesquisa, na qual se treinou uma rede neural artificial para estimar um índice de potencial de viagens para planejamento estratégico de transportes. Trata-se de um caso típico em que, embora a rede treinada conduza a estimativas razoáveis de número de viagens por domicílio a partir de variáveis que caracterizam a mobilidade e a acessibilidade, não se pode realizar outras análises a partir dos resultados sem fazer uso do software em que a rede neural artificial foi treinada e obviamente do arquivo com a rede já treinada. Daí a importância de desenvolver alternativas capazes de tornar mais efetivo o uso desse tipo de modelo. Dentre as alternativas aqui exploradas está a reprodução do modelo de RNA em uma planilha eletrônica, o desenvolvimento de um programa em visual basic, a construção de ábacos e a integração, de forma direta, do modelo de RNA a um sistema de informações geográficas (SIG). Para esse último caso, o modelo em ambiente SIG foi utilizado em uma aplicação na cidade de Bauru, a partir de dados agregados em zonas, onde se simulou alterações nos valores das variáveis de entrada, de forma a avaliar o seu impacto sobre as viagens estimadas em diferentes regiões da cidade. Todas as alternativas exploradas ilustram bem a ampliação das possibilidades de realização de análises de sensibilidade com os modelos de RNA, sobretudo quando combinados com os SIG, particularmente quando a localização dos valores estimados como saída é importante no contexto de análise e tomada de decisão. É importante destacar ainda que, além de permitir a condução de análises de sensibilidade, as alternativas apresentadas neste estudo podem, de certa forma, ajudar aos planejadores e tomadores de decisão a entender a lógica do modelo. / The objective of this work is to explore alternative procedures to make more effective the application of ANN (artificial neural network) models in transportation planning. While the use of a specific computer program for training the networks is acceptable, the requirement of the same dedicated software also for predictions and simulations using the trained network is very restrictive from a practical point of view. An alternative to tackle this problem would be to reproduce the behavior of the trained ANN models out the training package through the integration of their estimation capabilities to other tools and environments. This could extend the resources of different planning tools, allowing, for instance, simpler and direct sensitivity analyses. The present study is based on a model developed in previous research work, in which a particular ANN model has been developed to estimate a Trip Potential Index for transportation planning at a strategic level. This is a typical example of a model able to produce acceptable trip number estimations based on input variables associated to mobility and accessibility. Any further analyses, however, are usually dependent on the use of the same package used for training the network and the file with the trained network. This stresses the importance of developing alternatives to make more effective the use of this sort of model. Among the alternatives explored in this work are: the use of electronic spreadsheets, a computer program written in visual basic, graphs, and the direct integration of the ANN model into a geographic information system (GIS) commercial package. In the last case, the model in a GIS-environment has been used to run an application in the city of Bauru. Using data aggregated at the zonal level, changes in the input variables have been simulated in order to evaluate their impact on the trips estimated for different city regions. All alternatives explored here demonstrate the possibilities offered by the ANN models for sensitivity analyses. This is even more evident in the case of ANN models combined with GIS, particularly when the location of the predicted values is a relevant element in the analysis or decision making context. In addition, the procedures presented here may somehow help planners and decisionmakers in understanding the logic behind the models.
|
256 |
A utilização de redes neurais artificiais em um sistema de gerência de pavimentos / Use of artificial neural networks in a management pavement systemJosé Remo Ferreira Brega 17 February 1997 (has links)
Esta tese apresenta o estudo para utilização de Redes Neurais Artificiais para avaliar o estado do pavimento e apoiar as decisões dentro de um Sistema de Gerência de Pavimentos. É apresentado um método para a avaliação da condição em pavimentos flexíveis, utilizando redes neurais MLP backpropagation. Neste caso para a extração das características dos pavimentos são utilizados dois métodos muito empregados pelos órgãos rodoviários: o \"Índice de Gravidade Global\" e a \"irregularidade\". Os experimentos demonstraram que as redes neurais simulam satisfatoriamente o estado dos pavimentos. Para se verificar a possibilidade de utilização em outros problemas, o processo foi empregado para o projeto de restauração de pavimentos flexíveis. Foi utilizada a DNER-PRO 159/85 para a extração das características dos pavimentos. Os experimentos demonstraram que as redes neurais também simulam convenientemente as características do pavimento. Como exemplo de ferramenta de apoio à gerência foi desenvolvido um protótipo computacional em ambiente gráfico, onde o critério de decisão baseia-se nas redes neurais estudadas. São descritas todas as suas funções e forma de funcionamento. / A study of artificial neural networks for evaluating the pavement condition and for supporting decisions within a Pavement Management System is presented. The method for condition evaluation of flexible pavements using the MLP backpropagation technique is described. Two of the most used procedures for detecting the pavement conditions were applied: the \"overall severity index\" (Brazilian IGG) and the \"irregularity index\". The experiments demonstrated that the neural networks satisfactorily simulated the state of the pavement. In order to test the applications in other problems, the method was used for pavement overlay design through neural network, using the same MLP backpropagation technique. For detecting the pavement conditions the DNER-PRO 159/85 was applied. Tests with the model also demonstrated that the neural networks appropriately simulate the pavement characteristics. A computational prototype developed in a graphical computer environment, where the decision criteria are based on the neural networks studied, is presented as an example. All the functions and working details of such prototype are described.
|
257 |
Uma avaliação do consumo de energia com transportes em cidades do estado de São Paulo. / Energy use for transportation in cities of the state of São Paulo.Guilherme Camargo Ferraz Costa 04 October 2001 (has links)
Dados reais apontam um expressivo aumento do consumo de combustível no Brasil e no mundo, além de um crescimento acelerado da população urbana. Ambos os processos vem ocorrendo sem um controle adequado no país e, como conseqüência, têm surgido grandes deseconomias urbanas, tais como: congestionamentos, poluição ambiental, consumo exagerado de combustíveis e uso inadequado do espaço viário. Neste contexto, quaisquer iniciativas no intuito de frear estas deseconomias são relevantes e oportunas, tanto que pesquisas nacionais e internacionais vêm sendo realizadas buscando entender melhor os fatores que mais interferem na energia gasta com transportes. O objetivo deste trabalho é investigar a relação entre o consumo de energia com transportes e algumas variáveis espaciais e sócio-econômicas dos municípios do estado de São Paulo com população superior a 50 mil habitantes. A caracterização dos padrões de forma das áreas urbanizadas foi viabilizada graças aos recursos de um Sistema de Informações Geográficas, que possibilitaram determinar com relativa precisão as variáveis espaciais das manchas urbanas a partir de imagens de satélite georeferenciadas. Uma vez levantados todos os dados possíveis, procedeu-se a uma análise através do emprego de Redes Neurais Artificiais, ferramenta que possibilita identificar e classificar as variáveis de acordo com suas importâncias relativas no consumo de energia, que é a variável dependente do modelo. Os resultados encontrados para as cidades paulistas pesquisadas confirmam a tendência internacional, sobretudo no que concerne à grande relevância da densidade populacional urbana, juntamente com outras características sócio-econômicas, sobre o consumo de energia com transportes. Variáveis como a população urbana, a densidade populacional e o nível de empregos no comércio revelaram-se como as de maior importância relativa no contexto analisado. / The world has been experiencing in recent years an unprecedented increase in the amount of fuel consumed for transportation purposes, in addition to a fast growth of the urban population. Those conditions were also found in Brazil, where they have produced several problems for urban areas, such as: traffic congestion, environmental pollution, high fuel consumption, and an improper use of the urban space. In such a context, any attempt to reduce those problems and their consequences is relevant and opportune. That is the reason why a considerable research effort is being directed to the issue at both national and international levels, in order to better understand the factors that most significantly contribute for the high levels of energy use for transportation.The aim of this work is to investigate the relationship between energy consumption for transportation and a few selected variables related to urban form and socioeconomic characteristics of urbanized areas with more then 50,000 inhabitants located in the state of São Paulo. The boundaries of the urbanized areas were obtained from satellite images georeferenced in a Geographic Information System environment, which also offered the tools for the analysis of some spatial attributes. After the spatial and socioeconomic data were combined in a single database, they were then analyzed using Artificial Neural Network models, in order to identify variables that are relevant to energy consumption for transportation, along with their relative weights.The results found with the Brazilian cities selected for the current study confirmed the trend observed in several countries worldwide, in which urban density played an important role influencing energy use for transportation. In the case studied here, other relevant input variables that considerably influenced the energy consumed for transportation were population and employment level.
|
258 |
Predição de séries temporais utilizando algoritmos genéticosMarques, Ivonei da Silva January 2012 (has links)
Este trabalho apresenta um estudo sobre o paradigma de Algoritmos Genéticos aplicados a área de Predições de Séries Temporais. O resultado deste trabalho é apresentado na forma de comparação dos resultados obtidos entre o Modelo Clássico de Predição (UCM), Redes Neurais Artificiais (RNAs) e o modelo de Algoritmos Genéticos desenvolvido neste trabalho. Este estudo foi realizado trabalhando-se basicamente com o Índice Mensal de Produção Industrial do Estado do Rio Grande do Sul fornecido pelo IBGE (Instituto Brasileiro de Geografia e Estatística). Os resultados obtidos mostram que os Algoritmos Genéticos podem atingir níveis satisfatórios de precisão em relação aos valores preditos quando comparados com os valores reais. A validação é feita com predições de um passo à frente e de sete passos à frente. Estas predições são em relação aos sete meses iniciais do ano de 1993. / This work presents a study of Genetic Algorithms paradigm applied to Forecasting Time Series. The results are compared with the obtained with the Classic Model of Prediction (UCM), Artificial Neural Networks (RNAs). This study was accomplished using with the Monthly Index of Industrial Production of the State of Rio Grande do Sul, supplied by the IBGE(Instituto Brasileiro de Geografia e Estatística). The results show that the Genetic Algorithms can accomplish a satisfactory precision when compared with the real values. The validation is made with predictions, one and seven steps ahead. These predictions are equivalent to the seven initial months of 1993.
|
259 |
Identificação de fontes de correntes harmônicas por redes neurais artificiais / Identification of harmonic current sources with artificial neural networksRicardo Augusto Souza Fernandes 05 February 2009 (has links)
Este trabalho consiste em apresentar um método alternativo para a identificação de fontes de correntes harmônicas comumente encontradas em sistemas elétricos residenciais. Desta identificação, soluções viáveis poderão ser aplicadas com o intuito de mitigar os níveis de emissão das correntes harmônicas geradas, principalmente, por cargas com características não lineares. Para a identificação empregou-se redes neurais artificiais (RNAs), sendo esta técnica inteligente, apresentada como uma alternativa aos métodos convencionais. Os resultados reportados neste contexto procuram validar a proposta apresentada com dados experimentais obtidos em ensaios laboratoriais. / This work presents an alternative method for the identification of current harmonic sources commonly encountered in residential electrical systems. For this purpose, feasible solutions can be applied to minimize the levels of harmonic currents emission caused by nonlinear loads. Artificial neural networks are employed as alternative to conventional methods. The experimental results will be reported in order to validate the proposal presented with the experimental data obtained in laboratory.
|
260 |
Estudo de modelos de previsão do ozônio troposférico na região metropolitana de São Paulo / Study of tropospheric ozone forecasting models in the São Paulo Metropolitan AreaYanagi, Yoshio 19 October 2017 (has links)
Introdução. O estudo e compreensão dos efeitos da poluição atmosférica podem contribuir para o planejamento de estratégias de controle de emissões de poluentes e na tomada de decisões em relação à saúde pública. Modelos de previsão da poluição do ar são importantes, na medida em que podem antecipar precauções e providências de ações públicas. Objetivo. Elaborar e analisar modelos de previsão do ozônio troposférico para a Região Metropolitana de São Paulo (RMSP). Métodos. Foram ajustados modelos de previsão de ozônio utilizando redes neurais artificiais (RNAs), denominadas técnicas de inteligência artificial. Os dados de entrada do modelo foram os meteorológicos, obtidos do CPTEC - Centro de Previsão de Tempo e Estudos Climáticos e do INMET - Instituto Nacional de Meteorologia e os dados do poluente ozônio monitorados pela CETESB - Companhia Ambiental do Estado de São Paulo. Foram considerados, para o ozônio, o padrão nacional de qualidade do ar (1 hora) e o padrão estadual de qualidade do ar (8 horas). Os dados foram distribuídos entre as médias do período da manhã (07h às 12h) e as médias do período da tarde (13h às 18h), obtendo-se como saída as concentrações máximas de ozônio para o período da tarde. O período analisado foi de 2008 a 2014. Resultados. Foram realizados 311 testes distribuídos de acordo com o padrão de qualidade do ar do ozônio (O3-1h ou O3-8h) e a origem dos dados meteorológicos (CPTEC ou INMET). Os valores de ozônio observados e estimados mostraram-se muito bem correlacionados. Para os ajustes usando o banco de dados do CPTEC, os melhores resultados das estatísticas de verificação para O3-1h foram: A=90 por cento ; B=0,41; FAR=47 por cento ; POD=22 por cento ; r=0,60. Sendo A a porcentagem de acertos nas previsões de eventos e não eventos; B indica, na média, se as previsões estão subestimadas ou superestimadas; FAR é a porcentagem de concentrações que foram previstas altas e que não ocorreram; POD é a capacidade de prever altas concentrações ( por cento ) e r é o coeficiente de correlação entre o valor observado e o valor estimado. Para O3-8h: A=96 por cento ; B=0,1; FAR=14 por cento ; POD=6,5 por cento ; r=0,72. Considerando-se o banco de dados do INMET, os melhores resultados para O3-1h foram: A=93 por cento ; B=0,54; FAR=29 por cento ; POD=38 por cento , r=0,84. Para O3-8h: A=95 por cento ; B=0,76; FAR=47 por cento ; POD=40 por cento ; r=0,85. As variáveis temperatura e vento meridional foram as mais importantes nos modelos. Conclusões. No geral, os modelos simulados com os dados meteorológicos do INMET apresentaram melhores resultados que os apresentados pelos dados do CPTEC, tanto para O3-1h, quanto para O3-8h. O modelo simulado com os dados do INMET, considerando O3-8h, apresentou melhor previsibilidade. Os modelos ajustados por redes neurais mostraram-se como boas alternativas de instrumentos para prever a concentração de ozônio na RMSP. / Introduction. The study and understanding of the effects of air pollution can contribute to the planning of pollutant emission control strategies and decision-making in relation to public health. Air pollution forecasting models are important, as they can anticipate precautions and actions of public action. Objetive. Develop and analyze tropospheric ozone forecasting models for the São Paulo Metropolitan Area (SPMA). Methods. Ozone forecasting models were adjusted using artificial neural networks (ANNs), called artificial intelligence techniques. The model input data were the weather, obtained from CPTEC - Weather and Climate Studies Prediction Center and INMET - National Meteorology Institute and the pollutant ozone data monitored by CETESB - São Paulo State Environmental Company. Were considered for ozone, the national standard of air quality (1 hour) and the state standard of air quality (8 hours). Data were distributed among the averages of the morning (07h to 12h) and the average of the afternoon (13h to 18h), obtaining as output the maximum concentrations of ozone to the afternoon. The study period was from 2008 to 2014. Results. Were conducted 311 tests distributed according to the standard of ozone air quality (O3-1h or O3-8h) and the source of meteorological data (CPTEC or INMET). The observed and estimated ozone values were shown to be very well correlated. For the settings using the CPTEC database, the best results of the verification statistics for O3-1h were: A= 90 per cent ; B=0.41; FAR=47 per cent ; POD=22 per cent ; r=0.60. Where A is the percentage of correct answers of forecasts in the events and not events; B indicates, on average, if the predictions are underestimated or overestimated; FAR is the percentage concentrations that were predicted high and that did not occur; POD is the ability to predict high concentrations ( per cent ) and r is the correlation coefficient between the observed value and the estimated value. To O3-8h: A=96 per cent ; B=0.1; FAR=14 per cent ; POD=6.5 per cent ; r=0.72. Considering the INMET database, the best results for O3-1h were: A=93 per cent ; B=0.54; FAR=29 per cent ; POD=38 per cent , r=0.84. To O3-8h: A=95 per cent ; B=0.76; FAR=47 per cent ; POD=40 per cent ; r=0.85. The variables temperature and meridional wind were the most importante in the models. Conclusions. Overall, the simulated models with meteorological INMET data showed better results than those presented by the CPTEC data for both O3-1h, and for O3-8h. The simulated model with INMET data, considering O3-8h, presented better predictability. The models adjusted by neural networks showed up as good instruments to predict the ozone concentration in the SPMA.
|
Page generated in 0.1446 seconds