• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 45
  • 29
  • 27
  • 24
  • 22
  • 19
  • 18
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Synthesis and Applications of β-Cyanoporphyrins in Molecular Systems for Artificial Photosynthesis

January 2015 (has links)
abstract: As sunlight is an ideal source of energy on a global scale, there are several approaches being developed to harvest it and convert it to a form that can be used. One of these is though mimicking the processes in natural photosynthesis. Artificial photosynthetic systems include dye sensitized solar cells for the conversion of sunlight to electricity, and photoelectrosynthetic cells which use sunlight to drive water oxidation and hydrogen production to convert sunlight to energy stored in fuel. Both of these approaches include the process of the conversion of light energy into chemical potential in the form of a charge-separated state via molecular compounds. Porphyrins are commonly used as sensitizers as they have well suited properties for these applications. A high potential porphyrin with four nitrile groups at the beta positions, a β-cyanoporphyrin (CyP), was investigated and found to be an excellent electron acceptor, as well as have the necessary properties to be used as a sensitizer for photoelectrosynthetic cells for water oxidation. A new synthetic method was developed which allowed for the CyP to be used in a number of studies in artificial photosynthetic systems. This dissertation reports the theories behind, and the results of four studies utilizing a CyP for the first time; as a sensitizer in a DSSC for an investigation of its use in light driven water oxidation photoelectrosynthetic cells, as an electron acceptor in a proton coupled electron transfer system, in a carotene-CyP dyad to study energy and electron transfer processes between these moieties, and in a molecular triad to study a unique electron transfer process from a C60 radical anion to the CyP. It has been found that CyPs can be used as powerful electron acceptors in molecular systems to provide a large driving force for electron transfer that can aid in the process of the conversion of light to electrochemical potential. The results from these studies have led to a better understanding of the properties of CyPs, and have provided new insight into several electron transfer reactions. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2015
32

Compounds for Investigating Photosynthetic Pathways and Solar Energy Conversion

January 2015 (has links)
abstract: Humanity’s demand for energy is increasing exponentially and the dependence on fossil fuels is both unsustainable and detrimental to the environment. To provide a solution to the impending energy crisis, it is reasonable to look toward utilizing solar energy, which is abundant and renewable. One approach to harvesting solar irradiation for fuel purposes is through mimicking the processes of natural photosynthesis in an artificial design to use sunlight and water to store energy in chemical bonds for later use. Thus, in order to design an efficient energy conversion device, the underlying processes of the natural system must be understood. An artificial photosynthetic device has many components and each can be optimized separately. This work deals with the design, construction and study of some of those components. The first chapter provides an introduction to this work. The second chapter shows a proof of concept for a water splitting dye sensitized photoelectrochemical cell followed by the presentation of a new p-type semiconductor, the design of a modular cluster binding protein that can be used for incorporating catalysts, and a new anchoring group for semiconducting oxides with high electron injection efficiency. The third chapter investigates the role of electronic coupling and thermodynamics for photoprotection in artificial systems by triplet-triplet energy transfer from tetrapyrroles to carotenoids. The fourth chapter describes a mimic of the proton-coupled electron transfer in photosystem II and confirms that in the artificial system a concerted mechanism operates. In the fifth chapter, a microbial system is designed to work in tandem with a photovoltaic device to produce high energy fuels. A variety of quinone redox mediators have been synthesized to shuttle electrons from an electron donor to the microbial system. Lastly, the synthesis of a variety of photosensitizers is detailed for possible future use in artificial systems. The results of this work helps with the understanding of the processes of natural photosynthesis and suggests ways to design artificial photosynthetic devices that can contribute to solving the renewable energy challenge. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2015
33

Application and Study of Water Oxidation Catalysts and Molecular Dyes for Solar-Fuel Production

January 2013 (has links)
abstract: Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as the sole energy input and ideally do so with the use of low cost, abundant materials. Constructing photoelectrochemical cells incorporating photoanodes structurally reminiscent of those used in dye sensitized photovoltaic solar cells presents one approach to establishing an artificial photosynthetic system. The work presented herein describes the production, integration, and study of water oxidation catalysts, molecular dyes, and metal oxide based photoelectrodes carried out in the pursuit of developing solar water splitting systems. / Dissertation/Thesis / Ph.D. Chemistry 2013
34

Photoprotective & Solar Light Collecting Biomimetic Molecules

January 2014 (has links)
abstract: The first chapter reviews three decades of artificial photosynthetic research conducted by the A. Moore, T. Moore, and D. Gust research group. Several carotenoid (Car) and tetrapyrrole containing molecules were synthesized and investigated for excitation energy transfer (EET), photoregulation, and photoprotective functions. These artificial photosynthetic compounds mimicked known processes and investigated proposed mechanisms in natural systems. This research leads to a greater understanding of photosynthesis and design concepts for organic based solar energy conversion devices. The second and third chapters analyze the triplet energy transfer in carotenoid containing dyads. Transient absorption, time-resolved FTIR and resonance Raman spectra revealed that in a 4-amide linked carotenophthalocyanine dyads the Car triplet state is shared across the larger conjugated system, which is similar to protein complexes in oxygenic photosynthetic organisms. In a carotenopurpurin dyad (CarPur) a methylene ester covalent bond prevents the purpurin (Pur) from influencing the Car triplet based on the transient absorption, time-resolved FTIR and resonance Raman spectra. Thus CarPur resembles the antenna proteins from anoxygenic photosynthetic bacteria. Additional examples of carotenoporphyrin dyads further demonstrates the need for orbital overlap for ultrafast triplet energy transfer and the formations of possible intramolecular charge transfer state. The fourth chapter studies a 4-amino phenyl carotenophthalocyanine and its model compounds using high temporal resolution transient absorption spectroscopy techniques. EET from the Car second excited (S2) state to the phthalocyanine (Pc) was determined to be 37% and a coupled hot ground state (S*)/Pc excited state spectrum was observed. Excitation of the tetrapyrrole portion of the dyad did not yield any kinetic differences, but there was an S* signal during the excited states of the dyad. This demonstrates the EET and photoregulating properties of this artificial photosynthetic compound are similar to those of natural photosynthesis. The last chapter covers the synthesis of silicon Pc (SiPc) dyes and the methods for attaching them to gold nanoparticles and flat gold surfaces. SiPc attached to patterned gold surfaces had unperturbed fluorescence, however the selectivity for the gold was low, so alternative materials are under investigation to improve the dye's selectivity for the gold surface. / Dissertation/Thesis / Ph.D. Chemistry 2014
35

Theoretical Studies of Ru- and Re-based Catalysts for Artificial Photosynthesis

Stolper, Thorsten 08 December 2017 (has links)
No description available.
36

Vers la construction d'une photocathode de production d'hydrogène par une approche moléculaire / Towards the construction of a H2-evolving photocathode by a molecular strategy

Queyriaux, Nicolas 24 March 2016 (has links)
Alors que les besoins en énergie de nos sociétés modernes ne cessent de croître, et que la prise en compte des enjeux environnementaux occupe une place de plus en plus importante dans le développement de nouvelles technologies, la mise au point de procédés de production d’hydrogène utilisant des ressources renouvelables, telles que le rayonnement solaire comme source d'énergie ou l’eau comme donneur d’électrons et de protons, est un enjeu de toute première nécessité. Ce travail de thèse s’inscrit dans la continuité des études menées au sein de l’équipe « SolHyCat » du Laboratoire de Chimie et Biologie des Métaux sur le développement de systèmes électro- et photocatalytiques pour la réduction des protons en H2. Dans cette perspective, nous avons ainsi contribué à l’élaboration d’une photocathode moléculaire de production de H2 à travers la compréhension de différents paramètres moléculaires relatifs à sa construction. Dans un premier temps, nous nous sommes intéressés à la construction d’un lien covalent entre un motif photosensibilisateur et un centre catalytique de réduction des protons via la synthèse de dyades modèles. En parallèle, nous avons développé une méthodologie de synthèse permettant l’introduction de groupements d’ancrage robustes dans la sphère de coordination de photosensibilisateurs métallo-organiques. Enfin, l'étude des propriétés électrochimiques d'une nouvelle série de catalyseurs de réduction des protons à sphère de coordination polypyridinique a été étudiée. / There is an urgent need to provide solutions for the energetic challenge our planet has to face. The production of “environmentally friendly” fuels such as dihydrogen H2 through sunlight-driven water splitting holds great promise. Hydrogen is indeed a carbon-free energy carrier that can be stored and used on request to produce electricity thanks to the mature fuel cell technology. Moreover, water and solar energy form the ideal couple for H2 production because they are both readily available and their use is considered to be safe for the environment. The design and study of molecular photocatalytic systems for H2 evolution from water has therefore been the subject of intensive research interest in the last decade and their implementation into functional dye-sensitized photoelectrocatalytic cells recently appeared in the literature. It is nevertheless necessary to optimize the efficiency of these molecular systems in order to reach the targeted solar-to-hydrogen conversion yield. In that context, this PhD thesis aimed at getting a better understanding of parameters relevant for the optimization of molecular H2-evolving photocathodes: first, different coupling strategies have been studied to covalently assemble a light-harvesting unit with a redox-active moiety; second, a synthetic methodology allowing introduction of robust anchoring groups in the coordination sphere of ruthenium photosensitizers has been widely studied and the first photoelectrodes characterized; finally, a new series of proton reduction catalysts featuring a polypyridinic ligand has been investigated, allowing important kinetic and mechanistic insights to be obtained.
37

Hybrid Materials and Interfaces for Artificial Photosynthetic Assemblies

January 2020 (has links)
abstract: Chemical modification of (semi)conducting surfaces with soft-material coatings containing electrocatalysts provides a strategy for developing integrated constructs that capture, convert, and store solar energy as fuels. However, a lack of effective strategies for interfacing electrocatalysts with solid-state materials, and an incomplete understanding of performance limiting factors, inhibit further development. In this work, chemical modification of a nanostructured transparent conductive oxide, and the III-V semiconductor, gallium phosphide, is achieved by applying a thin-film polymer coating containing appropriate functional groups to direct, template, and assemble molecular cobalt catalysts for activating fuel-forming reactions. The heterogeneous-homogeneous conducting assemblies enable comparisons of the structural and electrochemical properties of these materials with their homogeneous electrocatalytic counterparts. For these hybrid constructs, rational design of the local soft-material environment yields a nearly one-volt span in the redox chemistry of the cobalt metal centers. Further, assessment of the interplay between light absorption, charge transfer, and catalytic activity in studies involving molecular-catalyst-modified semiconductors affords models to describe the rates of photoelectrosynthetic fuel production as a function of the steady-state concentration of catalysts present in their activated form. These models provide a conceptual framework for extracting kinetic and thermodynamic benchmarking parameters. Finally, investigation of molecular ‘proton wires’ inspired by the Tyrosine Z-Histidine 190 redox pair in Photosystem II, provides insight into fundamental principles governing proton-coupled electron transfer, a process essential to all fuel-forming reactions relevant to solar fuel generation. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2020
38

Design, Synthesis and Study of Supramolecular Donor – Acceptor Systems Mimicking Natural Photosynthesis Processes

KC, Chandra Bikram 12 1900 (has links)
This dissertation investigates the chemical ingenuity into the development of various photoactive supramolecular donor – acceptor systems to produce clean and carbon free energy for the next generation. The process is inspired by the principles learned from nature’s approach where the solar energy is converted into the chemical energy through the natural photosynthesis process. Owing to the importance and complexity of natural photosynthesis process, we have designed ideal donor-acceptor systems to investigate their light energy harvesting properties. This process involves two major steps: the first step is the absorption of light energy by antenna or donor systems to promote them to an excited electronic state. The second step involves, the transfer of excitation energy to the reaction center, which triggers an electron transfer process within the system. Based on this principle, the research is focused into the development of artificial photosynthesis systems to investigate dynamics of photo induced energy and electron transfer events. The derivatives of Porphyrins, Phthalocyanines, BODIPY, and SubPhthalocyanines etc have been widely used as the primary building blocks for designing photoactive and electroactive ensembles in this area because of their excellent and unique photophysical and photochemical properties. Meanwhile, the fullerene, mainly its readily available version C60 is typicaly used as an electron acceptor component because of its unique redox potential, symmetrical shape and low reorganization energy appropriate for improved charge separation behavior. The primary research motivation of the study is to achieve fast charge separation and slow charge recombination of the system by stabilizing the radical ion pairs which are formed from photo excitation, for maximum utility of solar energy. Besides Fullerene C60, this dissertation has also investigated the potential application of carbon nanomaterials (Carbon nanotubes and graphene) as primary building blocks for the study of the artificial photosynthesis process.
39

Design and Synthesis of Bismuth-based Layered Oxychloride Photocatalysts for Visible-Light-Driven Water Splitting / 可視光水分解のためのビスマス系層状酸塩化物光触媒の設計と合成

Ozaki, Daichi 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23216号 / 工博第4860号 / 新制||工||1759(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 阿部 竜, 教授 陰山 洋, 教授 藤田 晃司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
40

Electron and multielectron reaction characterizations in molecular photosystems by laser flash photolysis, towards energy production by artificial photosynthesis / Caractérisation des processus électroniques et multi-électroniques par spectroscopies laser résolues en temps dans des photosystemes moleculaires, vers la production de fuel solaire par photosynthèse artificielle

Tran, Thu-Trang 27 September 2019 (has links)
La demande énergétique de l’humanité augmente rapidement et ne montre aucun signe de ralentissement. Parallèlement à cette problématique, l'utilisation abusive de combustibles fossiles est l'une des principales causes d'augmentation de la concentration de CO₂ dans l'atmosphère. Ces problèmes doivent être résolus en termes de limitation des émissions de CO₂ et de recherche de sources d'énergie renouvelables pour remplacer les combustibles fossiles. De nos jours, l’énergie solaire est l’une des sources d’énergie renouvelables les plus efficaces. La conversion de l'énergie de la lumière solaire en électricité dans le photovoltaïque ou en énergie chimique par le biais de processus photocatalytiques implique invariablement un transfert d'énergie photo-induit et un transfert d'électrons. Dans ce contexte, l'objectif de la thèse est d'étudier les processus photo-induits dans les photosystèmes moléculaires utilisant la photolyse par flash laser. Le premier thème de cette thèse porte sur l’étude du transfert monoélectronique dans des systèmes de dyades donneur-accepteur en vue d’optimiser l’efficacité de la séparation des charges et de son application dans la cellule solaire organique photovoltaïque. Le deuxième thème de cette thèse porte sur l’étude de deux systèmes modèles de photosynthèse artificielle étudiés pour la possibilité d’une accumulation de charge par étapes. Ensuite, différents systèmes photocatalytiques, développés pour la photoréduction du CO₂, ont été étudiés. La compréhension des processus photo-induits devraient permettre l’amélioration de l'efficacité de la réduction du CO₂ dans les systèmes photocatalytiques pratiques. / The energy demand of humanity is increasing rapidly, and shows no signs of slowing. Alongside this issue, abuse using fossil fuels is one of the main reasons which leads to an increase in atmospheric CO₂ concentration. These problems have to be solved in terms of both limiting CO₂ emission and finding renewable energy sources to replace fossil fuels. Nowadays, solar energy appears as one of the most effective renewable energy sources. Conversion of solar light energy to electricity in photovoltaics or to chemical energy through photocatalytic processes invariably involves photoinduced energy transfer and electron transfer. In this context, the aim of the thesis focuses on studying photoinduced processes in molecular photosystems using laser flash photolysis. The first theme of this thesis focus on studying single electron transfer in Donor-Acceptor Dyad systems towards optimization efficiency of charge separation and application in the photovoltaic organic solar cell. In the second theme of this thesis, two model systems of artificial photosynthesis were investigated to assess the possibility of stepwise charge accumulation on model molecules. A fairly good global yield of approximately 9% for the two charge accumulation on MV²⁺ molecule was achieved. Then, different photocatalytic systems, which have developed for CO₂ reduction, were studied. Understanding of the photoinduced processes is an important step toward improving the efficiency of reduction of CO₂ in practical photocatalytic systems.

Page generated in 0.0643 seconds