• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Proteomic and Lipidomic Analysis of Mycobacteriophages Zalkecks and PotatoSplit

Taylor M Sorrell (12417871) 14 April 2022 (has links)
<p>Ever since the invention of antibiotics nearly a century ago,the threat of antibiotic resistance has been gradually increasing. As antibiotics are continually prescribed, the rate at which bacteria are becoming resistant to antibiotics is increasing as well. It is projected that antibiotic resistance is one of the largest threats to overall world health, and bacteriophage therapy is one of the leading strategies to combat it. Bacteriophages are viruses that infect and kill specific host bacteria andcan potentially be utilized to kill desired bacteria causing infections that are resistant to antibiotics.</p> <p><br></p> <p>The purpose of this research project is to learn more about the bacteriophage-host interaction through mass spectrometry and bioinformatic tools. This is done through the analysis of proteins and lipids that are produced when the bacteriophage infects the host bacteria. The growth curve of a Passage One From Frozen (P1FF) and a Passage Two From Frozen (P2FF) sample of Mycobacterium smegmatiswas calculated to determine to optimum time for bacteriophage infection. Twobacteriophages were chosen, PotatoSplit and Zalkecks, the Mycobacterium smegmatis samples were infected, samples collected, and mass spectrometry performed. A large portion of this research project is based on the analysis of the proteins and lipids that are produced during each bacteriophage’s infection. Proteomic and lipidomic strategies can be implemented to understand more about the bacteriophage-host interaction and discover any proteins and lipids that are produced at varying timepoints throughout the inoculation process. Bioinformatic tools can then be used to understand the potential functions of each protein or lipid and potential functions or applications of the bacteriophage in general, including the pathogenicity of each bacteriophage.</p> <p><br></p> <p> Determined from proteomic and lipidomic analysis, a list of all proteins and lipids found within each phage infected sample was made. An important trend discovered is that more phage proteins were expressed at later times during the phage infection –Hour 7 and Hour 10, whereas more bacterial proteins were expressed initially –Hour 0 and Hour 3. A case study to investigate the usage of different intensity types produced from mass spectrometry was completed. Overall, it was determined that both the number of phageproteins and bacterial proteins can differ depending on if LFQ or iBAQ intensity type data was used. Correlation between proteins and lipid ontology classes was performed and shows whether groups of lipids are upregulated or downregulated at 14each time point. Understanding the function of lipid ontology groups and the type of regulation provides insight into how the phage or bacteria are potentially using the lipids produced. Some of the main findings include lipids that are involved in bacterial defense mechanisms/energy usage increase over time. Some correlation trends were not consistent across the different bacteriophages, which can be contributed to the different phage life cycles  and therefore different phage-host interactions. Further investigation should be performed to determine the specific biological function of proteins and lipids to confidently make claims about potential applications for each phage. Also, further investigation should be performed to understand if the differences in results between bacteriophage PotatoSplit and Zalkecks are due to the varying life cycles.</p>
2

Omvårdnad vid central venkateter - Sjuksköterskans ansvarsområde - En systematisk litteraturstudie

Erlandsson, Linda, Nordqvist Nilsson, Cecilia January 2007 (has links)
Syftet med denna litteraturstudie är att sammanställa litteratur gällande olika typer av förband samt omläggningsfrekvens vid omvårdnad av central venkateter. Författarna har gjort en systematisk litteraturstudie och följt Goodmans sju steg i forskningsprocessen. Totalt inkluderades 15 vetenskapliga artiklar efter litteratursökning i databaserna PubMed, CINAHL, Cochrane Library samt via kompletteringar i ELIN. Artiklarna granskades av två oberoende bedömare utefter modifierade granskningsprotokoll och kvalitetsbedömdes därefter. Resultaten av denna sammanställning visar en tendens åt att sterila kompresser än så länge har ett litet försprång gentemot transparenta förband, i synnerhet när insticksstället inte läkt. En omläggningsfrekvens mellan fem och sju dagar verkar ge bäst resultat vid användning av transparenta förband, och varannan till var sjunde vid användning av kompressförband. Fler studier behövs som redovisar signifikanta resultat för att evidensgraden ska kunna höjas. / The aim of this study is to compile literature concerning which dressing type and redressing frequency is the most efficient handling for a central venous catheter (CVC). This study is a systematic literature review according to Goodman. Searches were made in the databases PubMed, CINAHL, Cochrane Library and complements through ELIN. A total of 15 scientific articles of quantitative design and literature reviews were included. The articles were then scrutinized by two independent readers and were then judged by quality. The result shows a tendency that sterile gauze has an advantage in comparison to transparent dressings so far, especially when the exit site has not fully healed. A redressing frequency between five to seven days seems to be the best alternative when using transparent dressings. When using sterile gauze the results have shown more variation; a redressing frequency every other day to every seventh day. More studies are necessary for reaching statisticly significant results.

Page generated in 0.0849 seconds