31 |
An Automated Reflectance Color Meter Instrument for Microbiological and Enzymic AssaysYuan, Tsz-Ching 01 May 1991 (has links)
The development of an automated instrument employing reflectance colorimetry was described. Several models were designed, assembled, and programmed to perform microbial and enzymic tests automatically. Samples were prepared manually or automatically by a Zymate™ II robot. These samples were incubated during the tests to maintain an optimum temperature for reactions and microbial growth. During incubation, color changes of appropriate indicator dyes in the sample/reagent mixtures were measured intermittently, recorded, and compared to previously defined end points. The computer-controlled instrument received data that related time of color changes with the initial numbers of microorganisms or the enzyme activity of the samples. Traditional pH and oxidation/reduction dyes were used. Suitable dyes and media were selected for fast estimation in the different assays studied . Applications of the instrument to evaluate raw milk for the total viable microbial count, abnormality, broad spectrum antibiotics, and coliforms were emphasized. The automated colorimeter system successfully quantitated total and coliform microflora in raw milk. Correlations between reflectance colorimetry and the spiral plate count method were .932 (using .12% TIC as indicator), .922 (using BCP as indicator), and .681 (using .04% TTC as indicator). A coefficient of correlation of .874 was obtained when reflectance colorimetry was compared with coliform numbers on violet red bile agar. The reflectance colorimetry system provided better precision than current reference methods. Preliminary incubation or larger sample volumes were required to estimate low numbers of microflora . Antibiotic residue detection was also evaluated using Lactococcus lactis ssp. cremoris UC 310+ with the automated colorimeter system. The following concentrations (ppb) could be detected: penicillin G:::;; 5, ampicillin ≤ 5, tetracycline ≤ 250 , sulfamethazine ≤ 30, streptomycin ≤ 1000, kanamycin ≤ 500, and chloramphenicol ≤ 500. Abnormal milk could be screened out by measuring the NAGase activity and chloride ion content in milk samples. Both methods had been integrated into the automated colorimeter system. The coefficient of correlation between somatic cell count and the NAGase activity as measured with the colorimeter was .802; a correlation of .792 could be obtained when chloride ion content was measured.
|
32 |
Resistance evaluation and management of Colorado potato beetle, Leptinotarsa decemlineata (Say), using novel chemistriesWimer, Adam Francis 14 June 2013 (has links)
Leptinotarsa decemlineata (Say) is the most important defoliating pest of potato Solanum tuberosum L., in North America and Europe. Management of this pest relies heavily on chemical control and insecticide resistance is a persistent problem. This phenomenon has increased the need for developing novel insecticides, resistance evaluation, and the development of alternative control strategies regarding this insect pest. From 2010 to 2013, field and lab experiments were conducted to evaluate the efficacy of a novel insecticide tolfenpyrad on L. decemlineata. In leaf-dip assays, tolfenpyrad was highly toxic to L. decemlineata with LC50 values of 0.013 and 0.164 g ai/L for larvae and adults, respectively. Tolfenpyrad was also toxic to eggs with 0% hatching after being dipped in a field rate concentration. In field efficacy trials, potato plots treated with tolfenpyrad at rates as low as 153 g ai/ha effectively controlled L. decemlineata.
In 2012, populations of L. decemlineata were collected from the Eastern Shore of VA and subjected to toxicity assays to determine current susceptibility to permethrin and oxamyl. The toxicity assays indicated an increase in toxicity to permethrin in L. decemlineata larvae (LC50 = 3.931 g ai/L) and an increase in toxicity to oxamyl in adult beetles (LC50 = 9.695 g ai/L) compared with LC50 values previously reported in 1990. In 2012, populations of L. decemlineata from Cheriton, VA, New Church, VA, Painter, VA, and Plymouth, NC were also evaluated for enzyme activity after exposure to sub-lethal concentrations of permethrin, oxamyl, and tolfenpyrad. Adult beetles were subjected to enzyme assays to measure the activity of cytochrome P450 mono-oxygenase (P450), glutathione-S-transferase (GST), general esterases, and protein content. Results from the enzyme assays indicated significantly greater esterase activity in beetles from Painter, VA exposed to permethrin [±-naphthol (F= 11.66, df= 4, 20, P<0.0001) and "-naphthol (F= 11.86, df= 4, 20, P<0.0001)], oxamyl [±- naphthol (F= 10.64, df= 4, 20, P<0.0001) and "-naphthol (F= 6.94, df= 4, 20, P=0.0011)], tolfenpyrad [±- naphthol (F= 407.62, df= 1, 8, P<0.0001) and "- naphthol (F= 28.15, df= 1, 8, P= 0.0007)], and the untreated control [±- naphthol (F= 28.14, df= 3, 16, P<0.0001) and "- naphthol (F= 28.86; df= 3, 16, P<0.0001)] compared to most of the other populations tested. GST activity was significantly greater in tolfenpyrad exposed beetles compared to the non-treated beetles from Painter VA (F= 17.66, df= 5, 24, P< 0.0001).
Through laboratory assays and field experiments in potato, the efficacy of a new bio-pesticide derived from the bacterium Chromobacterium subtsugae was evaluated for the control of L. decemlineata. Results from the laboratory assays showed L. decemlineata feeding was inhibited by the bio-pesticide derived from C. subtsugae. However, field efficacy trials in 2010, 2011, and 2012, indicated no control of L. decemlineata.
Methyl salicylate is an organic compound produced by potato and other plants in response to insect herbivory. Abundance of predatory arthropods and L. decemlineata life stages were measured in plots treated with and without 5 g slow-release packets of methyl salicylate (95% methyl salicylate (Predalure")). Methyl salicylate treatment had no impact on predator recruitment or cumulative mortality of L. decemlineata in potatoes.
This research has provided us with a new tool for L. decemlineata management, as well as more information about resistance trends and alternative control strategies from which we can build on to reduce resistance development in L. decemlineata and ultimately formulate a stronger integrated pest management strategy for this insect pest. / Ph. D.
|
33 |
Spectrum of coagulation profiles in severely injured patients: A subgroup analysis from the FIRST ( Fluids in Resuscitation of Severe Trauma) trialNathire, Mohammad El Hassed 18 January 2022 (has links)
Background: Uncontrolled bleeding accounts for the majority of preventable deaths in the severely injured in both the civilian and military settings. Trauma induced coagulopathy (TIC) is now widely accepted as a major contributing factor to worsening bleeding in these patients. A quarter of severe trauma patients present with coagulopathy on admission and remain a group with high morbidity and mortality. Objectives: To describe the spectrum of coagulation profiles amongst severely injured patients presenting to an urban level-one trauma centre at Groote Schuur Hospital and to correlate these with blood product requirements, morbidity and mortality. Method: This is a retrospective study of all patients with complete baseline TEG coagulation parameters collected prior to randomization in the FIRST (Fluids In Resuscitation of Severe Trauma) trial between January 2007 and December 2009. Parameters recorded for this study included patient demographics, mechanism of injury, admission vital signs, lactate, base excess, coagulation studies PT, INR, TEG parameters, volume and type of fluids administered, volume of blood products administered, length of ICU stay, and major outcomes. Injury severity was categorized according to the Injury Severity Score (ISS) and New Injury Severity Score (NISS). Results: A total of 87 patients were included in this study, with a median ISS of 20 and 57.5% had a penetrating injury mechanism. Coagulopathy was highly prevalent in this cohort, of which a majority (69%) was diagnosed with hypercoagulopathy and 24% had a hypocoagulopathy status on admission. There was no difference in age, gender and amount 9 of pre-hospital fluids administered across the three groups (normal v/s hyper v/s hypo). Median volume of blood products was higher in the hypocoagulopathy group, although not statistically significant. Overall, 30-day mortality rate was 13%, with case fatalities occurring in only coagulopathic patients; hypercoagulopathy (15%) and hypocoagulopathy (10%). Conclusion: Trauma induced coagulopathy is not an infrequent diagnosis and remains a challenging clinical entity to manage in severely injured patients resulting in increased morbidity and mortality. Determining the coagulation profile using TEG at presentation in this group of patients may guide appropriate management guidelines in order to improve outcome. Hypercoagulable patients need to be recognised amongst the TIC patients as it results in different sequelae and impacts on clinical decision in the use of antifibrinolytic agents as compared to hypocoagulopathy.
|
34 |
Use of Biophotonic Models to Monitor Biological Compounds via the Angiogenic SystemYoungblood, Ramey C 11 May 2013 (has links)
Angiogenesis is a central process to both physiological and pathological aspects of living organisms. Understanding the angiogenic system via the key mediator, vascular endothelial growth factor (VEGF), has led to the development of biophotonic models capable of monitoring how this process is programmed. The whole animal model tested here is based on the involvement of angiogenesis in a wound healing environment. This model proved to be functional as a system monitor but lacked the precision to yield significant results between the biological compounds tested (estrogen, methoxychlor, and relaxin). The in vitro model is based on angiogenesis in a cancer environment. This model proved to be both a valid and functional way of monitoring the biological compounds tested (CoCl2, epinephrine, and norepinephrine).
|
35 |
Ultra-sensitive Aptamer-based Lateral Flow Assays for DENV DetectionLu, Man 12 January 2023 (has links)
Dengue virus (DENV) is the causative agent of a mosquito-transmitted disease mainly in tropical regions of the earth. Dengue is commonly diagnosed using polymerase chain reaction (PCR) or enzyme-linked immunosorbent assay (ELISA); however, these diagnostic methods both require complicated blood sample preparation, highly trained personnel, and centralized laboratory facilities, all of which are difficult to realize in many clinical settings where resources are limited.
In the current study, a novel ultra-sensitive dendrimer-aptamer-based lateral flow assay (LFA) is designed to detect the presence of the DENV by detecting the envelope protein (E-Protein) of the DENV in phosphate-buffered saline (PBS) buffer and bovine serum albumin (BSA) sample. To achieve this, a “bioink”, a muti-handled streptavidin-dendrimer-aptamer conjugation is used to construct the modified test line in order to enhance the capturing efficiency of the signaling gold nanoparticle complexes on the test line. This work is the first time reported aptamer-based LFA of dengue virus detection. Our results show that the new LFA has a limit of detection of 24 pg/mL when tested using samples in PBS buffer (27 pg/mL in BSA solution), which is more sensitive that of a parallel ELISA test of 32 pg/mL and about ten-fold more sensitive than a conventional aptamer-based LFA. In addition, the new LFA shows that no non-specific binding with other E-protein in the flavivirus family and exhibits a long shelf-time for more than five weeks when stored in ambient conditions under subdued light.
It can be concluded that the use of “bioink” -- a streptavidin-dendrimer-aptamer -- complex on the T-line can significantly enhance the detection sensitivity of the LFA assay. As a result, it is perceivable that the intrinsic portable, rapid, user-friendly, and cost-effective natures of LFAs in combination with the enhanced sensitivity due to the special fishnet-liked design will find broader applications for the LFAs as an effective and sufficiently sensitive diagnostic tool in many resources limited clinical settings.
|
36 |
HIV-1 Gag Binding Specificity for Psi: Implications for Virus AssemblyLiu, Shuohui 31 October 2017 (has links)
No description available.
|
37 |
Improving Calcium Carbonate Based Porous Media for Lateral Flow Assays / CALCIUM CARBONATE BASED POROUS MEDIASzewczyk, Alexandra January 2020 (has links)
Nitrocellulose is currently the most common porous material used in commercially available lateral flow assays. It is, however, unsafe to manufacture and time consuming to incorporate into multi-component assay devices. Precipitated calcium carbonate is a material produced from naturally occurring lime that can be suspended in a binder and extruded onto a surface. This extruded suspension forms a porous coating through which a solution can be wicked. The physical characteristics of three different types of calcium carbonate types were investigated to determine differences that may yield better lateral flow. The capillary flow rate through the coating was found to be largely affected by the calcium carbonate type used, the binder concentration and whether any post-printing treatment was applied, specifically heating the print. Calcium carbonate has a high specific surface area, which results in a high protein binding capacity. To prevent protein binding, pre-treating calcium carbonate particles prior to forming the suspension in a binder was attempted. Pre-treatment with bovine serum albumin, casein or methoxy-PEG phosphate did not show prevention of protein binding. Furthermore, by treating the calcium carbonate particles with a protein before suspension formulation, the wicking rate after printing was found to be diminished. / Thesis / Master of Applied Science (MASc)
|
38 |
Identificação e caracterização de novos agentes com propriedades anticâncer / Identification and characterization of new agents with anticancer propertiesMagalhães, Luma Godoy 23 February 2015 (has links)
Câncer é a denominação de um conjunto de mais de cem doenças causadas pelo crescimento e multiplicação desordenados de células anormais capazes de invadir e se disseminar por diversos tecidos e órgãos. É considerado um problema de saúde mundial, sendo uma das maiores causas de morte. Dados da Organização Mundial da Saúde (OMS) indicam que 15% das mortes no mundo serão causadas por câncer em 2015. No Brasil, o Instituto Nacional do Câncer (INCA) estima 580 mil novos casos da doença para 2014. Apesar da vasta quimioterapia disponível, os tratamentos possuem alta toxicidade e estão sujeitos à resistência. Nesse contexto, a presente dissertação de mestrado tem como foco principal a identificação e caracterização de novos compostos com propriedades anticâncer. Os estudos foram realizados com base em dois alvos principais. O primeiro foi a proteína tubulina, um alvo anticâncer validado que é modulado por moléculas importantes como o taxol, a vimblastina e a colchicina. O segundo alvo foi a migração celular, característica relacionada ao processo de metástase, que é responsável por 90% das mortes por câncer. Uma série de acridinonas sintéticas foi avaliada in silico frente à proteína tubulina empregando métodos de modelagem molecular. Para tanto, fez-se uso de estruturas cristalográficas da proteína disponíveis no PDB (Protein Data Bank). Os resultados das análises de docagem molecular indicaram que as moléculas poderiam interagir com o sítio da colchicina e, dessa forma, atuariam como inibidoras da polimerização dos microtúbulos. Ensaios wound healing e em câmara de Boyden permitiram a identificação de quatro compostos com potente efeito de inibição da migração celular (valores de IC50 variando entre 0,294 e 1,7 μM) em uma linhagem metastática (MDA-MB-231). Estes compostos foram submetidos a ensaios de citotoxicidade frente à mesma linhagem tumoral e também apresentaram boa potência, com valores de IC50 variando entre 0,110 e 3 μM. Além disso, ensaios de citotoxicidade em células saudáveis mostraram que estes compostos inviabilizaram seletivamente células tumorais. Para a validação dos estudos in silico, ensaios de polimerização da tubulina foram conduzidos. Os resultados mostraram que as quatro moléculas ativas nos ensaios celulares atuam como inibidores de polimerização dos microtúbulos, com valores de IC50 variando entre 0,9 e 13 μM. Estudos das relações entre a estrutura e atividade (SAR) revelaram alguns aspectos interessantes nesta série de acridinonas, como, por exemplo, a perda de atividade, que se deu tanto nos ensaios celulares quanto nos ensaios bioquímicos, causada pela substituição de um grupo nitro da posição meta- por para- em duas moléculas da série. A progressão do ciclo celular foi analisada por citometria de fluxo e os resultados mostraram que os compostos estudados são capazes de interromper o ciclo celular entre as fases G2 e M. A citometria fluxo também permitiu verificar a indução da apoptose celular devida à ação das moléculas. Em resumo, este trabalho possibilitou a identificação e caracterização de quatro compostos com propriedades antitumorais promissoras que serão utilizados como compostos líderes para posterior desenvolvimento como agentes anticâncer. / Cancer is a set of diseases with high diversity and aggressiveness. It is one of the major causes of death according to the World Health Organization (WHO), being responsible for 15% of worldwide deaths in 2015. In Brazil, the National Institute of Cancer (INCA) estimates 580,000 new cases of cancer for the year of 2014. Despite the vast availability of cancer chemotherapy, the treatments cause high toxic effects and are liable to resistance. In this context, the main goal of the present master\'s dissertation is the identification and the characterization of new compounds having anticancer properties. These studies were conducted based on two main targets. The first one was the protein tubulin, a validated anticancer target that is modulated by important molecules such as taxol, vinblastine and colchicine. The second target was the cellular migration, a feature related to the metastasis process, which causes 90% of the cancer deaths. A series of synthetic acridinones was studied in silico employing molecular modeling methods. For this, crystallographic structures of tubulin were collected from PDB (Protein Data Bank). The docking results indicated that the molecules could interact with the colchicine site and, thereby, could act as tubulin polymerization inhibitors. The series was assessed by the wound healing and Boyden chamber\'s assays using the metastatic cell line MDA-MB-231. In these assays, four compounds were identified as good inhibitors of cellular migration (IC50 values varying between 0.294 and 1.7 μM). These compounds were evaluated in cytotoxicity assays using the same cell line and presented good potency, with IC50 values varying between 0.110 and 3 μM. Furthermore, cytotoxicity assays using a healthy cell line showed that these compounds act selectively in tumor cells. For the validation of the in silico studies, tubulin polymerization assays were conducted. The results showed that the four active molecules in the cellular assays act as tubulin polymerization inhibitors, with IC50 values varying between 0.9 and 13 μM. Structure-activity relationship (SAR) studies revealed interesting structural aspects in this series of acridinones, for instance, the exchange of the nitro group substituent from the meta- to the para- position in two molecules of the series led to a lack of activity in both cellular and biochemical assays. The cell cycle progression was evaluated by flow cytometry, and the results showed that the four compounds are capable of arrest cells in the G2/M phase. Moreover, the apoptosis induction was verified using flow cytometry. In summary, this work provided the identification and characterization of four new compounds with promising antitumor properties. These molecules will be used as lead compounds for further development as anticancer agents.
|
39 |
Identificação e caracterização de novos agentes com propriedades anticâncer / Identification and characterization of new agents with anticancer propertiesLuma Godoy Magalhães 23 February 2015 (has links)
Câncer é a denominação de um conjunto de mais de cem doenças causadas pelo crescimento e multiplicação desordenados de células anormais capazes de invadir e se disseminar por diversos tecidos e órgãos. É considerado um problema de saúde mundial, sendo uma das maiores causas de morte. Dados da Organização Mundial da Saúde (OMS) indicam que 15% das mortes no mundo serão causadas por câncer em 2015. No Brasil, o Instituto Nacional do Câncer (INCA) estima 580 mil novos casos da doença para 2014. Apesar da vasta quimioterapia disponível, os tratamentos possuem alta toxicidade e estão sujeitos à resistência. Nesse contexto, a presente dissertação de mestrado tem como foco principal a identificação e caracterização de novos compostos com propriedades anticâncer. Os estudos foram realizados com base em dois alvos principais. O primeiro foi a proteína tubulina, um alvo anticâncer validado que é modulado por moléculas importantes como o taxol, a vimblastina e a colchicina. O segundo alvo foi a migração celular, característica relacionada ao processo de metástase, que é responsável por 90% das mortes por câncer. Uma série de acridinonas sintéticas foi avaliada in silico frente à proteína tubulina empregando métodos de modelagem molecular. Para tanto, fez-se uso de estruturas cristalográficas da proteína disponíveis no PDB (Protein Data Bank). Os resultados das análises de docagem molecular indicaram que as moléculas poderiam interagir com o sítio da colchicina e, dessa forma, atuariam como inibidoras da polimerização dos microtúbulos. Ensaios wound healing e em câmara de Boyden permitiram a identificação de quatro compostos com potente efeito de inibição da migração celular (valores de IC50 variando entre 0,294 e 1,7 μM) em uma linhagem metastática (MDA-MB-231). Estes compostos foram submetidos a ensaios de citotoxicidade frente à mesma linhagem tumoral e também apresentaram boa potência, com valores de IC50 variando entre 0,110 e 3 μM. Além disso, ensaios de citotoxicidade em células saudáveis mostraram que estes compostos inviabilizaram seletivamente células tumorais. Para a validação dos estudos in silico, ensaios de polimerização da tubulina foram conduzidos. Os resultados mostraram que as quatro moléculas ativas nos ensaios celulares atuam como inibidores de polimerização dos microtúbulos, com valores de IC50 variando entre 0,9 e 13 μM. Estudos das relações entre a estrutura e atividade (SAR) revelaram alguns aspectos interessantes nesta série de acridinonas, como, por exemplo, a perda de atividade, que se deu tanto nos ensaios celulares quanto nos ensaios bioquímicos, causada pela substituição de um grupo nitro da posição meta- por para- em duas moléculas da série. A progressão do ciclo celular foi analisada por citometria de fluxo e os resultados mostraram que os compostos estudados são capazes de interromper o ciclo celular entre as fases G2 e M. A citometria fluxo também permitiu verificar a indução da apoptose celular devida à ação das moléculas. Em resumo, este trabalho possibilitou a identificação e caracterização de quatro compostos com propriedades antitumorais promissoras que serão utilizados como compostos líderes para posterior desenvolvimento como agentes anticâncer. / Cancer is a set of diseases with high diversity and aggressiveness. It is one of the major causes of death according to the World Health Organization (WHO), being responsible for 15% of worldwide deaths in 2015. In Brazil, the National Institute of Cancer (INCA) estimates 580,000 new cases of cancer for the year of 2014. Despite the vast availability of cancer chemotherapy, the treatments cause high toxic effects and are liable to resistance. In this context, the main goal of the present master\'s dissertation is the identification and the characterization of new compounds having anticancer properties. These studies were conducted based on two main targets. The first one was the protein tubulin, a validated anticancer target that is modulated by important molecules such as taxol, vinblastine and colchicine. The second target was the cellular migration, a feature related to the metastasis process, which causes 90% of the cancer deaths. A series of synthetic acridinones was studied in silico employing molecular modeling methods. For this, crystallographic structures of tubulin were collected from PDB (Protein Data Bank). The docking results indicated that the molecules could interact with the colchicine site and, thereby, could act as tubulin polymerization inhibitors. The series was assessed by the wound healing and Boyden chamber\'s assays using the metastatic cell line MDA-MB-231. In these assays, four compounds were identified as good inhibitors of cellular migration (IC50 values varying between 0.294 and 1.7 μM). These compounds were evaluated in cytotoxicity assays using the same cell line and presented good potency, with IC50 values varying between 0.110 and 3 μM. Furthermore, cytotoxicity assays using a healthy cell line showed that these compounds act selectively in tumor cells. For the validation of the in silico studies, tubulin polymerization assays were conducted. The results showed that the four active molecules in the cellular assays act as tubulin polymerization inhibitors, with IC50 values varying between 0.9 and 13 μM. Structure-activity relationship (SAR) studies revealed interesting structural aspects in this series of acridinones, for instance, the exchange of the nitro group substituent from the meta- to the para- position in two molecules of the series led to a lack of activity in both cellular and biochemical assays. The cell cycle progression was evaluated by flow cytometry, and the results showed that the four compounds are capable of arrest cells in the G2/M phase. Moreover, the apoptosis induction was verified using flow cytometry. In summary, this work provided the identification and characterization of four new compounds with promising antitumor properties. These molecules will be used as lead compounds for further development as anticancer agents.
|
40 |
The design of novel nano-sized polyanion-polycation complexes for oral protein deliveryKhan, Ambreen Ayaz January 2014 (has links)
Introduction Oral delivery of proteins faces numerous challenges due to their enzymatic susceptibility and instability in the gastrointestinal tract. In recent years, the polyelectrolyte complexes have been explored for their ability to complex protein and protect them against chemical and enzymatic degradation. However, most of the conventional binary polyelectrolyte complexes (PECs) are formed by polycations which are associated with toxicity and non-specific bio-interactions. The aim of this thesis was to prepare a series of ternary polyelectrolyte complexes (APECs) by introduction of a polyanion in the binary complexes to alleviate the aforementioned limitations. Method Eight non-insulin loaded ternary complexes (NIL APECs) were spontaneously formed upon mixing a polycation [polyallylamine (PAH), palmitoyl grafted-PAH (Pa2.5), dimethylamino-1-naphthalenesulfonyl grafted-PAH (Da10) or quaternised palmitoyl-PAH (QPa2.5)] with a polyanion [dextran sulphate (DS) or polyacrylic acid (PAA)] at 2:1 ratio, in the presence of ZnSO4 (4μM). A model protein i.e., insulin was added to a polycation, prior to addition of a polyanion and ZnSO4 to form eight insulin loaded (IL) APECs. PECs were used as a control to compare APECs. The complexes were characterised by dynamic light scattering (DLS) and transmission electron microscope (TEM). In vitro stability of the complexes was investigated at pH (1.2-7.4), temperature (25˚C, 37˚C and 45˚C) and ionic strength (NaCl-68mM, 103mM and 145mM). Insulin complexation efficiency was assessed by using bovine insulin ELISA assay kit. The in vitro cytotoxicity was investigated on CaCo2 and J774 cells by MTT (3-4,5 dimethyl thialzol2,5 diphenyl tetrazolium bromide) assay. All complexes were evaluated for their haemocompatibility by using haemolysis assay, oxidative stress by reactive oxygen species (ROS) assay and immunotoxicity by in vitro and in vivo cytokine generation assay. The potential of the uptake of complexes across CaCo2 cells was determined by flow cytometry and fluorescent microscopy. The underlying mechanism of transport of complexes was determined by TEER measurement, assessment of FITC-Dextran and insulin transport across CaCo2 cells. 15 Results NIL QPa2.5 APECs (except IL QPa2.5-DS) exhibited larger hydrodynamic sizes (228-468nm) than all other APECs, due to the presence of bulky quaternary ammonium moieties. QPa2.5 APECs exhibited lower insulin association efficiency (≤40%) than other APECs (≥55%) due to a competition between the polyanion and insulin for QPa2.5 leading to reduced association of insulin in the complexes. DS based APECs generally offered higher insulin association efficiency (≥75%) than PAA based APECs (≤55%) due to higher molecular weight (6-10kDa) of DS. In comparison to other complexes, Pa2.5 PECs and APECs were more stable at varying temperature, ionic strength and pH due to the presence of long palmitoyl alkyl chain (C16) which reduced the chain flexibility and provided stronger hydrophobic association. The cytotoxicity of polycations on CaCo2 and J774 cells is rated as PAH>Da10=Pa2.5>QPa2.5. The introduction of PAA in Pa2.5 and Da10 brought most significant improvement in IC50 i.e., 14 fold and 16 fold respectively on CaCo2 cells; 9.3 fold and 3.73 fold respectively on J774 cells. In comparison to other complexes, Da10 (8mgml-1) induced higher haemolytic activity (~37%) due to a higher hydrophobic load of 10 percent mole grafting of dansyl pendants. The entire range of APECs displayed ≤12% ROS generation by the CaCo2 cells. The degree of in vitro TNFα production (QPa2.5≥Da10≥Pa2.5=PAH) and in vitro IL-6 generation (QPa2.5≥Pa2.5=PAH≥Da10) by J774 cells established an inverse relationship of cytotoxicity with the cytokine generation. Similar to MTT data, the introduction of PAA in APECs brought more significant reduction in in vitro cytokine secretion than DS based APECs. Pa2.5-PAA brought the most significant reduction in both in vitro and in vivo cytokine generation. All the formulations were able to significantly reduce original TEER, however did not demonstrate appreciable paracellular permeation of a hydrophilic macromolecular tracer of paracellular transport i.e., FITC Dextran. The uptake study revealed internalisation of APECs predominantly by a transcellular route. Transcellular uptake of IL QPa2.5 (≤73%), IL QPa2.5-DS (67%) was higher than their NIL counterparts, whereas the uptake of NIL Pa2.5 (≤89%), NIL Pa2.5-PAA (42%) was higher than their IL counterparts. Conclusion In essence, amphiphilic APECs have shown polyanion dependent ability to reduce polycation associated toxicity and they are able to facilitate transcellular uptake of insulin across CaCo2 cells.
|
Page generated in 0.0478 seconds