• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 15
  • 9
  • 8
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 117
  • 65
  • 28
  • 21
  • 19
  • 16
  • 16
  • 14
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Design and implementation of an IBM assembly language assembler

Ong, Hong Kien. January 1980 (has links)
Thesis: B.S., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 1980 / by Hong Kien Ong. / B.S. / B.S. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
62

Regulating the Biomedical and Biocatalytic Properties of Amphiphilic Self-assembling Peptides via Supramolecular Nanostructures

Li, Zhao 28 August 2023 (has links)
Self-assembly is a fundamental process in the field of nanotechnology, where molecules organize into complex structures spontaneously or induced by environmental factors. Peptides, short chains of amino acids, can self-assemble into many types of nanostructures. The self-assembly of peptides is governed by noncovalent interactions, including electrostatic interactions, hydrogen bonding, hydrophobic interactions, aromatic-aromatic interactions, and van der Waals forces. By varying the amino acid sequences and manipulating environmental parameters, these interactions can be modulated to obtain diverse supramolecular nanostructures, exhibiting a wide range of physical, chemical, and biological properties. Furthermore, the ability to control these properties opens up a world of possibilities in biomedical and biocatalytic applications. From drug delivery systems to enzyme mimics, as well as cancer treatments, the potential of these self-assembling peptides is vast and continues to be a vibrant area of research. Exploiting this potential, this dissertation delves into the design, synthesis, and investigation of self-assembling peptides for a range of applications. The introductory chapters of this document lay the groundwork, providing a comprehensive overview of self-assembly and its potential in biocatalytic and biomedical domains. The focus shifts in the later chapters to drug delivery applications, particularly in the delivery of hydrogen sulfide (H2S), and its implications in cardioprotection and cancer treatment. Finally, this document details an evaluation of self-assembled peptides in the context of biocatalysis using a combined experimental and computational approach. Chapter 3 discusses the design and synthesis of peptide-H2S donor conjugates (PHDCs) with an unusual adamantyl group. Several of PHDCs studied in this chapter self-assembled into novel nanocrescent structures observed under both conventional transmission microscopy (TEM) and cryogenic TEM (cryo-TEM). By varying the C-terminal amino acid with cationic, nonionic, or anionic amino acids, the PHDC morphologies remained unaffected, offering a robust peptide design for crescent-shaped supramolecular nanostructures. Chapter 4 discusses an extension of this project, introducing a cyclohexane in PHDCs instead of an adamantyl group. In this work, we designed and fabricated four constitutional isomeric PHDCs, which self-assembled into nanoribbons with different dimensions and large nanobelts. These morphologies exhibited varying cellular uptake and in vitro H2S release amounts, influencing their protective effects against oxidative stress induced by H2O2. With the knowledge of the impact of subtle changes in PHDC structures, Chapter 5 discusses our further design of three more PHDCs with the variation of side chain capping group, from an aromatic phenyl ring to a cyclohexane unit, to an aliphatic n-hexyl chain. In this chapter, we studied how changes in the hydrocarbon tail can influence the supramolecular nanostructures and their potential ability for colon cancer treatment. A final aspect of H2S delivery in Chapter 6 involves the creation of a stable PHDC with an extended H2S release profile. By integrating the H2S donor into a β-sheet forming peptide sequence with a Newkome-like poly(ethylene glycol) dendron, this PHDC self-assembles into spherical or fibril nanostructures with or without stirring. The H2S release was further studied by triggering release with various charged thiol molecules. Finally, another facet of this document focuses on three constitutional isomeric tetrapeptides containing a catalytic functional amino acid, His. Chapter 7 discusses these tetrapeptides, which self-assembled into nanocoils, nanotoroids, and nanoribbons based on the position of the His residue in the peptide sequence. Computational studies simulating the self-assembling process revealed the distribution of His residues and hydrophobic pockets, reminiscent of natural enzyme binding sites. A tight spatial distribution of His residues and hydrophobic pocket in nanocoils provided a picture for why this morphology exhibited the highest rate enhancement in catalyzing a model ester hydrolysis reaction. This study demonstrated how subtle molecular-level changes impact supramolecular nanostructures and catalytic efficiency. The final chapter details conclusions on all the research in this dissertation and discusses further directions of self-assembling peptides in the application of drug delivery and design of catalyst mimics. / Doctor of Philosophy / Self-assembly is a fascinating process in nanotechnology, where molecular building blocks come together to form complex structures. Peptides, which are short chains made up of amino acids, can play a crucial role in this process. They can organize themselves into various shapes due to different forces acting between their amino acid building blocks. By changing the arrangement of amino acids and adjusting the environment, scientists can create a wide range of nanoscale structures with unique properties from peptides. These self-assembling peptides have enormous potential in fields like medicine and catalysis. This dissertation describes how to design and make self-assembling peptides for various uses. Chapter 1 describes the general structure of the document, and Chapter 2 discusses the basics of self-assembly and how it can be applied in medicine and other areas. Chapters 3-6 focus on using self-assembling peptides to deliver hydrogen sulfide (H2S), a noxious gaseous molecule that is now recognized as a vital signaling molecule involved in various physiological processes. Several classes of peptide-H2S donor conjugates (PHDCs) are discussed in these chapters, including PHDCs that form nanoscale crescents, twisted ribbons, fibers, and other structures. These nanostructures show promise in protecting cells from harmful substances or can act as drugs in cancer treatment. We also investigate how different modifications affect their performance in biomedical applications. The final research chapter, Chapter 7, involves using self-assembling peptides as catalysts, molecules that speed up chemical reactions. By arranging the amino acids in different ways, peptides that form nanoscale coils, toroids, or ribbons-like structures were created. These different shapes influenced how well they catalyzed reactions. Computational modeling studies helped explain how small differences in molecular design led to big impacts on their catalytic abilities. The final chapter discloses conclusions on all the research in this dissertation and discusses the further directions of self-assembling peptides as medicines and catalysts.
63

Investigation of Aminoglycoside Induced Nanoparticle Self-Assemblies

Leong, Michael 01 January 2018 (has links)
Aminoglycosides are a group of broad-spectrum antibiotics that, under neutral pH conditions, carry a positive charge. The net cationic charge arises from the high number of amino groups in the core structure of aminoglycosides. Previous studies performed have shown that negatively charged citrate ligand-capped gold nanoparticles (AuNPs) can interact with various biomolecules such as aminoglycosides. AuNPs bound to biomolecules have been used in conjugation with various assaying techniques to detect and study compounds in vitro and in vivo. AuNPs also have strong light scattering properties that can be used with a wide variety of imaging and assaying techniques. Our laboratory has previously performed experiments on the aminoglycoside antibiotic ribostamycin sulfate. During this experiment, the concentration dependent rod-like assembly of ribostamycin sulfate was characterized. This experiment used three analytical techniques in conjunction with AuNPs: (1) dynamic light scattering (DLS), (2) UV-Vis absorption spectroscopy, and (3) dark field optical microscope imaging (DFM). This suite of techniques was used to analyze mixtures of ribostamycin sulfate at different concentration with different sized AuNPs. The primary objective of this research was to determine if the techniques used to characterize the self-assembly of ribostamycin sulfate could be generalized and applied to other aminoglycoside antibiotics. The secondary objective of this research was to determine if other aminoglycoside antibiotics formed rod-like assemblies. This study demonstrated that AuNPs can be used to detect self-assembled oligomers for different aminoglycoside antibiotics. In addition, this study also revealed that not all aminoglycoside antibiotics will self assemble into rod-like oligomers similar to ribostamycin. It was observed that the aminoglycoside antibiotic amikacin self assembled into rod-like aggregates similar to ribostamycin sulfate but the aminoglycoside antibiotics neomycin sulfate and streptomycin sulfate did not.
64

Cucurbit[n]urils in Self-Assembling Molecular Devices: Thermodynamic and Kinetic Considerations

Ling, Xiaoxi January 2013 (has links)
No description available.
65

Three-Dimensional Matrices Used to Characterize Cellular Behavior

Stevenson, Mark Daniel 19 December 2012 (has links)
No description available.
66

Design of apparatus for threaded part mating experiments

Ranyak, Paul Stephen. January 1981 (has links)
Thesis: B.S., Massachusetts Institute of Technology, Department of Mechanical Engineering, 1981 / Vita. / Includes bibliographical references. / by Paul Stephen Ranyak. / B.S. / B.S. Massachusetts Institute of Technology, Department of Mechanical Engineering
67

INTERFACIAL ENGINEERING OF SYNTHETIC AMPHIPHILES AND ITS IMPACT IN THE DESIGN OF EFFICIENT GENE AND DRUG DELIVERY SYSTEMS

Sharma, Vishnu Dutt January 2014 (has links)
Cancer is currently the second most common cause of death in the world. Despite tremendous progress in the treatment of different forms of cancer, the five year survival rates for lung, colorectal, breast, prostate, pancreatic and ovarian cancers remain quite low. New therapies are urgently needed for the better management of these diseases. In this context, both therapeutic gene and drug delivery constitute promising approaches for cancer treatment and are addressed in this thesis. Focusing on gene delivery, we are proposing the use new pyridinium amphiphiles for obtaining gene delivery systems with improved stability and efficiency and low toxicity (Chapters 2 and 3). The main focus was on pyridinium gemini surfactants (GSs), which possess a soft charge, a high charge/mass ratio and a high molecular flexibility - all key parameters that recommend their use in synthetic gene delivery systems with in vitro and in vivo efficiency. In Chapter 2, we optimized a novel DNA delivery systems through interfacial engineering of pyridinium GS at the level of linker, hydrophobic chains and counterions. In Chapter 3, we tested the effects of blending pyridinium cationic GS into pyridinium cationic lipid bilayers and we have evaluated these blends towards plasmid DNA compaction and delivery process. We have also correlated the cationic bilayer composition with the dynamics of the DNA compaction process, and with transfection efficiency, cytotoxicity and internalization mechanism of resulted nucleic acid complexes. Toward improved drug delivery systems, we introduced new amphiphilic block copolymers synthesized from biocompatible and biodegradable segments. Although their capabilites for loading, transport and release of lipophilic substances stored in their hydrophobic cores are widely known, their stability in vivo is limited due to rapid degradation by esterases present in the body. In Chapter 4, we examined the possibility to increase the enzymatic stability of PEG-PCL macromolecular amphiphiles through interfacial engineering, in a process which separates the hydrophilic/hydrophobic interface from the degradable/non-degradable block interface. We evaluated the stability, toxicity, drug loading and release properties of these new polymers using docetaxel as a model chemotherapeutic drug. The results revealed how hydrophilic/ hydrophobic interface tuning can be used to adjust key properties of polymeric drug delivery systems of this type. / Pharmaceutical Sciences
68

Valná hromada akciové společnosti / The General Meeting of a joint stock company

Stiborová, Aneta January 2011 (has links)
The aim of my thesis is to provide a comprehensive overview of the current legal status of general meetings of the stock companies and procedures for their assembling from the perspective of legal theory and practice, focusing on the current decision-making process of courts within the Czech Republic. The method used for gathering all the information needed was the studying of the available sources, namely: published books and magazines, and published judgments of the Supreme Court of the Czech Republic considering the given issue. The paper aims, in addition to a general description and unification of uncontested facts, to discuss issues and options for solutions conformimg with the laws of the Czech Republic. Simultaneously, the paper seeks to draw attention to the conclusions of the courts and the vocational community. The focus of the thesis is the definition of authorized meeting organizers and their responsibilities associated the role; followed by a systematic analysis of the covening of the General Assembly to define particular problems which might be encountered by the convener and shareholders may throughout the practice. The conclusion is devoted to European law and its impact on the law of the Czech Republic in the field of law of general meetings of joint stock companies.
69

Investigação do efeito de moléculas auto-organizáveis na resistência à corrosão da liga de Alumínio 1050 / Investigation on the of effect of self assembling molecules on the corrosion resistance of the 1050 aluminium alloy

Szurkalo, Margarida 16 December 2009 (has links)
Tratamentos de superfície são técnicas amplamente utilizadas com a finalidade de aumentar a resistência à corrosão de materiais metálicos. No caso específico do alumínio e ligas de alumínio, o tratamento com cromo hexavalente é um dos processos mais utilizados. Isso, em razão da eficiência e da facilidade de aplicação desse processo. Entretanto, em virtude de restrições ambientais e do elevado custo de tratamento de resíduos gerados neste processo, métodos alternativos para sua substituição vêm sendo avaliados. Neste contexto, o presente estudo investigou o processo de formação e proteção à corrosão fornecida por filmes de moléculas autoorganizáveis de compostos à base de fosfonatos sobre a liga de alumínio 1050. Para definir as condições do tratamento foram utilizadas medidas de condutividade e de ângulo de contato, juntamente com ensaios eletroquímicos. Técnicas eletroquímicas, especificamente: medidas de variação do potencial a circuito aberto (PCA), espectroscopia de impedância eletroquímica (EIE) e polarização potenciodinâmica foram utilizadas para avaliar a proteção à corrosão. Os diagramas experimentais de impedância foram interpretados utilizando circuitos elétricos equivalentes que simulam modelos do filme de óxido que se forma na superfície da liga. Os resultados fornecidos com a liga tratada com moléculas auto-organizáveis foram comparados com resultados obtidos em iguais condições com amostras da liga sem qualquer tratamento ou cromatizada com Cr(VI) e mostraram que o tratamento com moléculas auto-organizáveis aumenta significativamente a resistência à corrosão da liga e apresenta, em determinadas condições, desempenho próximo ao fornecido pelo processo de cromatização. / Surface treatments are widely used to increase the corrosion resistance of metallic materials. Specifically for aluminum and aluminum alloys, treatment with hexavalent chromium is one of the most used, due to its efficiency and ease of application. However, because of environmental restrictions and the high cost involved in the treatments of waste generated in this process, alternative methods for its replacement are necessary. In this context, this study investigated the effect of the surface treatment with self-assembling molecules (SAM) based on phosphonate compounds on the corrosion of the 1050 aluminum alloy. The conditions adopted for the SAM treatment were determined by conductivity and contact angle measurements, besides electrochemical experiments. Electrochemical techniques, specifically: measurement of the open circuit potential (OCP) variation with time, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves were used to evaluate the corrosion resistance of the 1050 aluminum alloy exposed to SAM treatment The experimental impedance diagrams were interpreted using equivalent electrical circuit models that simulate film that is formed on the alloy surface. The results of the samples treated with SAM were compared with those of samples either without any treatment or treated with chromatizing conversion coating with Cr(VI) and showed that the first treatment significantly increased the corrosion resistance of the aluminum alloy and approached that of chromatizing with Cr(VI) process.
70

Peptide-Mediated Anticancer Drug Delivery

Sadatmousavi, Parisa 13 August 2009 (has links)
An ideal drug delivery system should contain an appropriate therapeutic agent and biocompatible carrier. In this study, we investigated the ability of the all-complementary self-assembling peptide AC8 in stabilizing the anticancer compound and determined the in-vitro therapeutic efficacy of the peptide-mediated anticancer drug delivery. The all-complementary peptide AC8 was designed based on the amino acid pairing principle (AAP), which contains hydrogen bonding, electrostatic, and hydrophobic interaction amino acid pairs. AAP interactions make the peptide capable of self-assembling into β-sheet structure in solution in a concentration dependent manner. Peptide solution concentration is a key parameter in controlling the nanoscale assembling of the peptide. The critical assembly concentration (CAC) of the peptide was found ~ 0.01 mg/ml by several techniques. The all-complementary peptide AC8 was found to be able to stabilize neutral state of hydrophobic anticancer compound ellipticine in aqueous solution. The formation of peptide-ellipticine complex was monitored by fluorescence spectroscopy at different mass ratios of peptide-to-ellipticine. The anticancer activity of the complexes with neutral state of ellipticine was found to show great anticancer activity against two cancer cells lines, A-549 and MCF-7. This peptide-mediated anticancer delivery system showed the induction of apoptosis on cancer cells in vitro by flow Cytometry.

Page generated in 0.0725 seconds