• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1623
  • 315
  • 292
  • 274
  • 216
  • 73
  • 56
  • 48
  • 30
  • 26
  • 11
  • 9
  • 8
  • 7
  • 7
  • Tagged with
  • 3584
  • 1299
  • 430
  • 395
  • 341
  • 252
  • 222
  • 206
  • 199
  • 197
  • 184
  • 167
  • 166
  • 165
  • 147
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

Magnetically-Assisted Statistical Assembly - a new heterogeneous integration technique

Fonstad, Clifton G. Jr. 01 1900 (has links)
This paper presents a new technique for the monolithic heterogeneous integration of compound semiconductor devices with silicon integrated circuits, and establishes the theoretical foundation for a key element of the process, tailored magnetic attraction and retention. It is shown how a patterned thin film of hard magnetic material can be used to engineer the attraction between the film and nanopills covered with a soft magnetic material. With a suitable choice of pattern, it is anticipated that it will be possible to achieve complete filling of recesses in the surface of fully-processed integrated circuit wafers, preparatory to subsequent processing to fabricate the nanopills into heterostructure devices integrated monolithically with the pre-existing electronics. / Singapore-MIT Alliance (SMA)
542

Planning and Teaching Compliant Motion Strategies

Buckley, Stephen J. 01 January 1987 (has links)
This thesis presents a new high level robot programming system. The programming system can be used to construct strategies consisting of compliant motions, in which a moving robot slides along obstacles in its environment. The programming system is referred to as high level because the user is spared of many robot-level details, such as the specification of conditional tests, motion termination conditions, and compliance parameters. Instead, the user specifies task-level information, including a geometric model of the robot and its environment. The user may also have to specify some suggested motions. There are two main system components. The first component is an interactive teaching system which accepts motion commands from a user and attempts to build a compliant motion strategy using the specified motions as building blocks. The second component is an autonomous compliant motion planner, which is intended to spare the user from dealing with "simple" problems. The planner simplifies the representation of the environment by decomposing the configuration space of the robot into a finite state space, whose states are vertices, edges, faces, and combinations thereof. States are inked to each other by arcs, which represent reliable compliant motions. Using best first search, states are expanded until a strategy is found from the start state to a global state. This component represents one of the first implemented compliant motion planners. The programming system has been implemented on a Symbolics 3600 computer, and tested on several examples. One of the resulting compliant motion strategies was successfully executed on an IBM 7565 robot manipulator.
543

Defects in Self Assembled Colloidal Crystals

Koh, Yaw Koon, Teh, L. K., Wong, Chee Cheong 01 1900 (has links)
Colloidal self assembly is an efficient method for making 3-D ordered nanostructures suitable for materials such as photonic crystals and macroscopic solids for catalysis and sensor applications. Colloidal crystals grown by convective methods exhibit defects on two different scales. Macro defects such as cracks and void bands originate from the dynamics of meniscus motion during colloidal crystal growth while micro defects like vacancies, dislocation and stacking faults are indigenous to the colloidal crystalline structure. This paper analyses the crystallography and energetics of the microscopic defects from the point of view of classical thermodynamics and discusses the strategy for the control of the macroscopic defects through optimization of the liquid-vapor interface. / Singapore-MIT Alliance (SMA)
544

Analytic methods for calculating performance measures of production lines with buffer storages

January 1978 (has links)
S.B. Gershwin, I.C. Schick. / "October, 1978." Caption title. / Bibliography: leaf 6. / Supported by the National Science Foundation under Grant no. NSF/RANN APR76-12036
545

Self-assembly of extended, high-density gold nanoparticle monolayers on silicon dioxide /

Foster, Evan Wayne, January 2006 (has links)
Thesis (Ph. D.)--University of Oregon, 2006. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 173-182). Also available for download via the World Wide Web; free to University of Oregon users.
546

Molecular self-assembly and interactions in solutions of membrane proteins and surfactants

Santonicola, Mariagabriella. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisors: Eric W. Kaler, College of Engineering; and Abraham M. Lenhoff, Dept. of Chemical Engineering. Includes bibliographical references.
547

The Story of the Promiscuous Substrate: An Investigation of the Role of the PI3K Pathway in p27Kip1 Regulation

Larrea, Michelle Davila 29 February 2008 (has links)
Deregulated cell proliferation, resulting from disruption of cell cycle control, is characteristic of many cancers. In normal cells, cell cycle progression is mediated by a family of cyclin dependent kinases (Cdks) that are positively regulated by associated cyclins. The activities of these cyclin-Cdk complexes are regulated by two protein families: the inhibitors of Cdk4 (INK4) and the kinase inhibitor proteins (KIP). p27 is a KIP family member that can inhibit cyclin E-Cdk2 activity. It also plays a role in the assembly and nuclear import of cyclin D-Cdk4 in early G1. p27 has been shown to be deregulated in human cancers by accelerated proteolysis, sequestration in cyclin D-Cdk complexes, and mislocalization to the cytoplasm. The causes of these alterations are not fully understood, but result, at least in part, from changes in signal transduction pathways that alter p27 phosphorylation and function. Activation of both the Ras/Raf/ mitogen activated protein kinase (MAPK) and the phospho-inositol 3' kinase (PI3K) pathways have been shown to alter p27 function and to activate p27 degradation in different cell types. In this thesis, I have investigated the roles played by two kinases downstream of PI3K, protein kinase B (PKB) and p90 ribosomal S6 kinase (RSK1), in regulation of p27 function. I observed that PKB-mediated phosphorylation of p27 promotes p27-cyclin D1-Cdk4 assembly. p27 phosphorylation by RSK1 alters the interaction of p27 with cytoskeleton proteins to promote cell motility. I observed that PKB activation and the appearance of p27pT157 and p27pT198 in early G1 precede p27-cyclin D1-Cdk4 assembly. PI3K/PKB inhibition dissociates cellular p27-cyclin D1-Cdk4 and p27T157A, p27T198A and p27T157A/T198A bind cellular cyclin D1 and Cdk4 poorly. Cellular p27pT157 and p27pT198 co-precipitate with Cdk4 but not Cdk2. p27 phosphorylation by PKB increases the ability of p27 to assemble cyclin D1-Cdk4 in vitro, but yields inactive Cdk4. While Src does not affect p27's ability to assemble cyclin D1-Cdk4, Src treatment yields catalytically active p27-cyclin D1-Cdk4. Thus, while PKB dependent p27 phosphorylation promotes p27-cyclin D1-Cdk4 assembly, tyrosine phosphorylation of p27 is required for activation of p27-cyclin D1-Cdk4 complexes. Constitutive activation of PKB and Abl or Src family kinases in cancers would drive p27 phosphorylation, increase cyclin D1-Cdk4 assembly and activation, and reduce the cyclin E-Cdk2 inhibitory function of p27. Combined therapy with both Src and PI3K/PKB inhibitors may reverse this process. While RSK1 has been shown to phosphorylate p27, the key phosphorylation sites and the consequence of this phosphorylation event were not fully elucidated. I have shown that RSK1 activation in early G1 precedes p27 phosphorylation at T157 and T198 in synchronized cell populations. Overexpression of RSK1 causes resistance to G1 arrest by TGF-â. Moreover, cells overexpressing RSK1 show an increase in p27 phosphorylation at T198, increased p27 stability, and an increase in p27 binding to Cdk4. In addition, RSK1-transfectants have increased cytoplasmic p27, associated with increased cell motility and inhibition of RhoA. p27 phosphorylation by recombinant RSK1 increases p27 binding to RhoA, while p27T157A/T198A shows reduced association with RhoA in cells. Thus, phosphorylation of p27 at T198 by RSK1 promotes its binding to RhoA and loss of actin stress fiber stability. Oncogenic RSK1 activation may promote increased cancer cell migration and cancer metastasis. Taken together our results indicate that oncogenic activation of the PI3K pathway can contribute to loss of cyclin E-Cdk2 inhibitory action of p27 by at least two mechanisms. Activation of PKB and RSK1 signaling would promote cytoplasmic mislocalization of p27, p27-RhoA binding and inhibition of the RhoA pathway to augment cell motility. In addition, these phosphorylation events on p27 would increase the assembly of p27-cyclin D1-Cdk4 as a first step in a chain of events that would promote that nuclear import and activation of D-type cyclin Cdk complexes, shifting the equilibrium away from the Cdk2 inhibitory action of p27.
548

Self-Assembly of Dendrimers and Cucurbit[n]uril Complexes

Wang, Wei 14 December 2008 (has links)
This dissertation investigates the preparation and electrochemical studies on a series of novel redox active hybrid dendrimers. The author also describes cucurbit[8]uril (CB8) mediated dendrimer self-assembly and their size selection by applying external electrochemical stimulus. In addition to this, a series of redox active, carboxylic acid terminated dendrimers were deposited onto indium tin oxide (ITO) surfaces. The surface interactions between the dendrimers and the metal oxides were characterized by electrochemical, spectroscopic, and atomic force microscopic methods. Additionally, the author describes molecular recognition behavior studies between several redox active guests and cucurbit[7]uril (CB7) in non-aqueous media. Furthermore, the author also describes the preparation and electronic communication studies on a series of bisferrocenylamino triazine derivatives. Three chapters of this dissertation deal with dendrimer applications in several different topics. A general introduction to dendrimers is given in Chapter I, including a short history, dendrimer structural features, synthetic methodologies, and also including their general applications on several different topics. Chapter II describes the preparation and characterization of a series of novel redox active hybrid dendrimers. These dendrimers consist of a ferrocenylamino nucleus and two series of popular dendrons (Fréchet and Newkome type). Interestingly, the microenvironment surrounding the redox residues is finely adjustable by varying the size of these two types of dendrons. Chapter III describes the molecular recognition studies with selected redox active guests and the macrocyclic host CB7 in non-aqueous media. The extremely strong host-guest interaction between CB7 and ferrocenylmethyl-trimethylammonium (FA) in aqueous media experiences a substantial thermodynamic stability loss when transferred to non-aqueous media. In stark contrast to this, the binding behavior between CB7 and the dicationic guest methyl viologen (MV) exhibits less sensitivity to environmental variation. Furthermore, the electrochemical studies were performed under non-aqueous media. In general, host CB7 encapsulation of these redox active guests in non-aqueous media induces different electrochemical behavior compared to that of aqueous media. For instance, the cyclic voltammetric response of CB7 encapsulated FA in DMSO exhibit substantial cathodic potential shift, which is opposite to the behavior in aqueous media. Chapter IV describes CB8 mediated dendrimer self-assembly. A new series of pi-donor containing Newkome type dendrimers were synthesized. These pi-donor containing dendrimers are found to form stable ternary charge transfer complexes with another series of pi-acceptor (viologen) containing dendrimers. Furthermore, one electron reduction of the viologen residue disrupts the charge transfer complexes and leads to the assembly of viologen radical cation dimmers. And, thus, may result in substantial size selection between these two types of dendrimer assemblies. Chapter V describes the exploration of a series of redox active dendrimers bearing multiple carboxylic acids as surface anchoring groups to attach onto the optical transparent semiconductor material ITO coated glass surfaces. The dendrimer derivatized ITO slides were further prepared as working electrodes, and the subsequent electrochemical studies revealed that these dendrimers strongly adsorb onto ITO surfaces. Especially, the ITO electrodes treated with the second generation dendrimer exhibit rather stable electrochemical behavior. The surface coverages of ITO electrodes treated with dendrimers were estimated by current integration. Atomic force microscopic studies provided insights on surface topographical variation before and after the dendrimer deposition. Infrared spectroscopic studies further revealed the chemical interactions between dendrimer carboxylic acid groups and the metal oxide surfaces. Chapter VI describes the preparation of a series of triazine based bisferrocenylamino derivatives. Variable 1H-NMR and 13C-NMR spectroscopic studies clearly indicate that these bisferrocenylamino triazine derivatives exhibit rotamerization phenomena. And, the rotamer coalescence temperatures are mediated by the third substituent group. The X-ray crystallographic analyses disclose the partial double bond character between the amino nitrogen and the triazine carbon, which reveal the structural proof behind the rotamerization phenomena. Furthermore, electrochemical experiments are performed under two sets of experimental conditions. No electronic communication is observed when using the traditional tetrabultylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte. In stark contrast to this, electronic communication between the bisferrocenyl residues is observed when using tetrabultylammonium tetrakis(pentafluorophenyl)borate (TBAB(C6F5)4) as supporting electrolyte. Surprisingly, the electronic communication strength can be mediated by a third substituent group. Computational studies provide insights into the molecular geometry and electronic structure of the mixed valence species. By combining the supporting electrolyte dependant electronic communication behavior, near-IR spectroscopic studies and the computational results, we conclude that, the electronic communication between the bisferrocenyl residues in these investigated triazine derivatives occurs through space metal-metal interactions.
549

Layer-by-layer assembly of poly(3,4-ethylenedioxythiophene) thin films: tailoring growth and UV-protection

Dawidczyk, Thomas James 15 May 2009 (has links)
Conductive thin films of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT-PSS) were created via layer-by-layer assembly. The PEDOT-PSS was used in an aqueous solution as an anionic polyelectrolyte, with both linear and branched polyethylenimine (PEI) and poly(allylamine hydrochloride) (PAH) in the positive aqueous solution. The electrical conductivity was varied by altering pH, concentration, polyelectrolyte, and doping the PEDOT with dimethylsulfoxide (DMSO). The most conductive 12BL samples were doped with 1wt% DMSO and have a sheet resistance of approximately 8kΩ/□. Despite exhibiting good initial conductivity, these PEDOT based thin films degrade under ultraviolet (UV) exposure. UV absorbing nanoparticles were added into the cationic solution in an effort to reduce UV sensitivity. The final bilayers of the films contained either colloidal titanium dioxide (TiO2) or carbon black (CB) and the films were exposed to a 365nm UV-light with an intensity of 2.16mW/cm2 for 9 days. The UV light at this intensity correlates to approximately four years of sunlight. The initial sheet resistances for all samples were similar, but the UV-degradation was reduced by a factor of 5 by utilizing TiO2 and CB in the final bilayers. In addition to being the most conductive after UV exposure, the TiO2 containing film was also 27% more optically transparent than the pure PEDOT films. These additional UV-absorbing nanoparticles extend the operational life of the PEDOT films and, in the case of TiO2, do so without any reduced transparency.
550

Metallo-supramolecular block copolymers : from synthesis to smart nanomaterials

Guillet, Pierre 08 July 2008 (has links)
Supramolecular copolymers have become of increasing interest in recent years for the search of new materials with tunable properties. In particular, metallo-supramolecular block copolymers have seen important progresses since the last five years. In this thesis, a library of metallo-supramolecular amphiphilic block copolymers containing a hydrophilic block, linked to a hydrophobic block, through a metal-ligand complex has been investigated. The micelles formed in water from these copolymers were characterized by AFM and TEM and exhibited a different behavior compared to their covalent counterpart. Furthermore, a novel strategy to control the formation of amphiphilic brushes from metallo-supramolecular block copolymers has been developed. Starting from a heteroleptic block copolymer, the initial low molecular weight counterions were exchanged for polymeric ones, leading to the formation of complex architectures. Another part of this thesis is dedicated to the use of metal-ligand interactions located at the extremity of micelles. Since ligands are located at the extremity of the coronal chains, they are available for complexation with metal ions. The effect of the addition of various metal ions to this system was studied in the dilute regime by dynamic light scattering, and different situations have been observed depending on the metal-to-ligand ratio and to the nature of the metal ions. In more concentrated solutions, a second hierarchical level is reached leading to the formation of a micellar gel, due to the formation of intermicellar bridges. Rheological measurements revealed that the characteristic behavior of those gels critically depends on the added metal ions. Finally, the self-assembly of a metallo-supramolecular block copolymer in thin films was investigated. Due to the presence of the charged complex at the junction of the two blocks, this copolymer could be considered as a triblock with a highly immiscible block that effects the orientation of the cylindrical microdomains and the lateral ordering.

Page generated in 0.0595 seconds