• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1623
  • 315
  • 292
  • 274
  • 216
  • 73
  • 56
  • 48
  • 30
  • 26
  • 11
  • 9
  • 8
  • 7
  • 7
  • Tagged with
  • 3584
  • 1299
  • 430
  • 395
  • 341
  • 252
  • 222
  • 206
  • 199
  • 197
  • 184
  • 167
  • 166
  • 165
  • 147
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Computer aided design for work injury elimination in production assembly systems

Lin, Li 25 March 2009
Work injury is one of the major obstacles in manufacturing industries especially in production assembly systems all over the world. Work injuries reduce production efficiency and threat human health. Among various types of work injuries, repetitive work injuries are the one that can be easily neglected. This thesis is about the application of computing technology to analysis and synthesis of repetitive work injuries in production assembly systems for the purpose of reduction or elimination of these injuries.<p> A production assembly system consists of the assembly machines, products, tools, humans (workers), and particular environments. Injuries of the worker are basically caused by over stress, strain, and fatigue, which are further related to the workers posture.<p> This research proposed a general methodology for constructing a software system for analysis and simulation of a workers postures in a virtual environment. The implementation of such a computer system was discussed. This research also proposed methods to compute work injury cost. Finally, this research proposed a more systematic method for the synthesis or re-design of worker postures to reduce or eliminate work injuries. The major contribution of this thesis work is to advance computing to work injury analysis and synthesis in production systems. <p> This thesis study concludes that the computer technology is matured enough to highly automate the process of work injury analysis and synthesis. It is possible that a complete design of production systems with consideration of work injuries can be done in a much more efficient manner perhaps reduction of the ramp-up process in the automobile industry from 6 months (typically) to one month in addition to the removal of wasted materials and potential injuries in the ramp-up process.
562

Comparison of DNA sequence assembly algorithms using mixed data sources

Bamidele-Abegunde, Tejumoluwa 15 April 2010
DNA sequence assembly is one of the fundamental areas of bioinformatics. It involves the correct formation of a genome sequence from its DNA fragments ("reads") by aligning and merging the fragments. There are different sequencing technologies -- some support long DNA reads and the others, shorter DNA reads. There are sequence assembly programs specifically designed for these different types of raw sequencing data.<p> This work explores and experiments with these different types of assembly software in order to compare their performance on the type of data for which they were designed, as well as their performance on data for which they were not designed, and on mixed data. Such results are useful for establishing good procedures and tools for sequence assembly in the current genomic environment where read data of different lengths are available. This work also investigates the effect of the presence or absence of quality information on the results produced by sequence assemblers.<p> Five strategies were used in this research for assembling mixed data sets and the testing was done using a collection of real and artificial data sets for six bacterial organisms. The results show that there is a broad range in the ability of some DNA sequence assemblers to handle data from various sequencing technologies, especially data other than the kind they were designed for. For example, the long-read assemblers PHRAP and MIRA produced good results from assembling 454 data. The results also show the importance of having an effective methodology for assembling mixed data sets. It was found that combining contiguous sequences obtained from short-read assemblers with long DNA reads, and then assembling this combination using long-read assemblers was the most appropriate approach for assembling mixed short and long reads. It was found that the results from assembling the mixed data sets were better than the results obtained from separately assembling individual data from the different sequencing technologies. DNA sequence assemblers which do not depend on the availability of quality information were used to test the effect of the presence of quality values when assembling data. The results show that regardless of the availability of quality information, good results were produced in most of the assemblies.<p> In more general terms, this work shows that the approach or methodology used to assemble DNA sequences from mixed data sources makes a lot of difference in the type of results obtained, and that a good choice of methodology can help reduce the amount of effort spent on a DNA sequence assembly project.
563

Role of FtsA in cell division in <i>Neisseria gonorrhoeae</i>

Li, Yan 09 May 2011
<p> Bacterial cell division is an essential process, which is initiated by forming the Z-ring as a cytoskeletal scaffold at the midcell site, followed by the recruitment of a series of divisome proteins. In <i>Escherichia coli</i> (Ec), at least 15 divisome proteins (FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsB, FtsL, FtsI, FtsW, FtsN, FtsE, FtsX, ZapA, AmiC, EnvC) have been implicated in this process. The components of the cell division machinery proteins in <i>Neisseria gonorrhoeae</i> (Ng) differs from <i>E. coli. N. gonorrhoeae</i> possesses FtsA, but lacks FtsB. ZipA and FtsL in <i>N. gonorrhoeae</i> have low identity to ZipA and FtsL from <i>E. coli</i>. Our laboratory has studied the central division protein FtsZ in <i>N. gonorrhoeae</i>. Thus, my research investigated the role of <i>N. gonorrhoeae</i> FtsA in cell division and investigated the interactions between divisome proteins from <i>N. gonorrhoeae</i> to understand divisome assembly.</p> <p>This study determined the association of FtsA<sub>Ng</sub> with FtsZ</sub>Ng and other divisome proteins in <i>N. gonorrhoeae</i> and identified the functional domains of FtsA<sun>Ng</sub> involved in these interactions using a bacterial two-hybrid (B2H) assay. FtsA<sub>Ng</sub> interacted with FtsZ<sub>Ng</sub>, FtsK<sub>Ng</sub>, FtsW<sub>Ng</sub>, FtsQ<sub>Ng</sub>, and FtsN<sub>Ng</sub>. Self-interactions of FtsA<sub>Ng</sub> and FtsZ<sub>Ng</sub> were also detected. FtsI<sub>Ng</sub>, FtsE<sub>Ng</sub> and FtsX<sub>Ng</sub> did not interact with FtsA<sub>Ng</sub>. The 2A<sub>1</sub>, 2A<sub>2</sub> and 2B domains of FtsA<sub>Ng</sub> were sufficient to interact with FtsZ<sub>Ng</sub> independently. Domain 2A<sub>1</sub> interacted with FtsK<sub>Ng</sub> and FtsN<sub>Ng</sub>. Domain 2B of FtsA<sub>Ng</sub> interacted with FtsK<sub>Ng</sub>, FtsQ<sub>Ng</sub>, and FtsN<sub>Ng</sub>. Domain 2A<sub>2</sub> of FtsA<sub>Ng</sub> interacted with FtsQ<sub>Ng</sub>, FtsW<sub>Ng</sub>, and FtsN<sub>Ng</sub>. These data suggest that FtsA in <i>N. gonorrhoeae</i> plays a key role in interactions with FtsZ and other divisome proteins.</p> <p>The potential interactions between divisome proteins in <i>N. gonorrhoeae</i> were examined using B2H assays. The comparisons between the <i>N. gonorrhoeae</i> divisome protein interaction network and those of <i>E. coli</i> and <i>S. pneumoniae</i> indicates that the divisome protein interactome of <i>N. gonorrhoeae</i> is more similar to that of <i>S. pneumoniae</i> and differs from that of <i>E. coli</i>. The comparisons revealed that compared to the interactions in <i>E. coli</i> and <i>S. pneumoniae</i>, more interactions between divisome proteins upstream of FtsA<sub>Ng</sub> (including FtsA<sub>Ng</sub>) and downstream of FtsA<sub>Ng</sub> were observed in <i>N. gonorrhoeae</i> while fewer interactions between divisome proteins downstream of FtsA<sub>Ng</sub> were observed in <i>N. gonorrhoeae</i>. Possible reasons for this include the inability of ZipA<sub>Ng</sub> to interact with other divisome proteins and the absence of FtsL and FtsB in <i>N. gonorrhoeae</i>, resulting in the lack of an FtsQ-FtsB-FtsL complex in <i>N. gonorrhoeae</i>. These results indicate a possibly different divisome assembly in <i>N. gonorrhoeae</i> from that proposed models for <i>E. coli</i>.</p> A model for FtsA<sub>Ng</sub> structure was predicted based on structural homology modeling with the resolved crystal structure of <i>Thermotoga maritima</i> FtsA. Four domains on the molecule were identified, designated 1A, 1C, 2B and 2A (including 2A<sub>1</sub> and 2A<sub>2</sub>). Domains 2A and 2B of FtsA were highly conserved based on multi-sequence alignments of FtsAs from 30 bacteria. FtsA<sub>Ng</sub> located to the division site in <i>N. gonorrhoeae</i> cells and the ratio of FtsA to FtsZ ranged from 1:24 to 1: 33 in three <i>N. gonorrhoeae</i> strains, which gave a lower cellular concentration of FtsA compared to other organisms.</p> <p>I also determined that overexpression of FtsA<sub>Ng</sub> in <i>E. coli</i> led to cell filamentous in rod-shaped <i>E. coli</i> and cell enlargement and aggregation in mutant, round <i>E. coli</i>. FtsA<sub>Ng</sub> failed to complement an <i>ftsA</i><sub>Ec</sub>-deletion <i>E. coli</i> strain although the overexperssion of FtsA<sub>Ng</sub> disrupted <i>E. coli</i> cell division. In addition, overexpression of FtsA<sub>Ng</sub> only affected cell division in some cells and its localization in <i>E. coli</i> was independent of interaction with <i>E. coli</i> FtsA or FtsZ. These results indicate that FtsA<sub>Ng</sub> exhibits a species-specific functionality and <i>E. coli</i> is not a suitable model for studying FtsA<sub>Ng</sub> functionality.</p> <p>This is the first study to characterize FtsA from <i>N. gonorrhoeae</i> in cell division. I identified novel functional domains of FtsA<sub>Ng</sub> involved in interactions with other divisome proteins. The <i>N. gonorrhoeae</i> divisome protein interaction network determined by B2H assays provides insight into divisome assembly in <i>N. gonorrhoeae</i></p>.
564

Species Assemblage Structure and Ecomorphological Convergence in Perciform Fishes (Cichlidae and Centrarchidae) in Tropical and Temperate Floodplain Rivers

Montana, Carmen 1976- 14 March 2013 (has links)
In this study, I used two independent perciform lineages (Neotropical Cichlidae and Nearctic Centrarchidae) to examine patterns of species richness and species coexistence a two spatial scales (e.g., macrohabitat and mesohabitat) and to examine inter-faunal patterns of ecomorphological convergence. The study was conducted during the low-water periods in four lowland rivers: the Cinaruco in Venezuela, the Tambopata in Peru, and the Neches and the Brazos rivers in Texas (USA). These rivers were chosen because of their similar characteristics, in terms of geomorphology, sediments, and water quality. The Cinaruco River and the Neches River have clear slightly-stained waters, whereas the Tambopata and the Brazos River have turbid waters with high loads of suspended sediments. I used morphological approaches as a surrogate to investigate patterns of species distribution in niche space, and predict patterns of species richness at different spatial scales. Despite high variation in the number of species in these two perciform assemblages, morphological analysis based on the means and standard deviations of nearest neighbor distance (NND) and mean distance to centroid (CD) revealed similar trends of morphological similarity in relation to species richness. Comparison of observed versus randomized data mesohabitat scale for all four rivers generally supported the niche expansion model of response to increase in species richness. At the scale of mesohabitats within rivers, most species assemblages appear to be organized by competitive interactions in accordance with the niche expansion model. The tropical species-rich Cinaruco River revealed particularly strong support for the niche expansion model. Intercontinental comparison of functional morphology and diets based on analysis of stomach contents and stable isotope ratios indicated broad morphological and dietary overlap between cichlid and centrarchid assemblages. For the most part, morphological ordinations showed that the two groups have diversified in a parallel manner within the confines of ram-suction modes of prey ingestion. This study concludes that even though differences are observed in historical and stochastic factors structuring fish assemblages in different geographic regions, consistent patterns of convergence at the species and assemblage levels results from natural selection under similar environmental conditions.
565

Layer-by-Layer Assembled Smectite-Polymer Nanocomposite Film for Rapid Detection of Low-Concentration Aflatoxins

Hu, He 1987- 14 March 2013 (has links)
Aflatoxin is a potent biological toxin produced by fungi Aspergillus flavus and A. parasiticus. Current quantification methods for aflatoxins are mostly established on immunoaffinity columns which are both costly and labor intensive. Inspired by smectites’ high aflatoxin adsorption capacity and affinity, a novel aflatoxin quantification sensor based on smectite-polyacrylamide (PAM) nanocomposite was fabricated. First, a smectite-PAM nanocomposite film was synthesized on flat silicon substrates which assembled smectite particles from the clay suspension. A layer-by-layer assembly process was developed to achieve uniform morphology and thickness of the nanocomposite films. During the aflatoxin quantification process, positive correlations between the fluorescence intensity from the aflatoxin B1 (AFB1) adsorbed smectite-PAM nanocomposite films and the AFB1 concentration in the test solutions were obtained. The smectite-PAM nanocomposite film has shown similar AFB1 adsorption capabilities as the smectite. Second, the smectite-PAM nanocomposite film was optimized in order to achieve the aflatoxin quantification at ppb level (below 20ppb) in corn extraction solutions. The smectite was modified by Ba2+, which had demonstrated to be able to improve its aflatoxin adsorption capacity. PAM aqueous solutions with the mass concentration ranging from 0.8% to 0.001% were tested. The results showed that the nanocomposite synthesized from 0.005% concentration of PAM solution generated the best properties. After the optimization, the smectite-PAM nanocomposite films achieved the detection of aflatoxin B1, B2, G1 and G2 (AFB2, AFG1 and AFG2) in 10 ppb corn extraction solution. Aflatoxin quantifications in AFB1 and AFB2 mixture solution, AFB1 and AFB2 mixture solution and AFB1 and AFG1 mixture solution were conducted, and the recoveries of last test ranged from 90.52% to 110.11% at low aflatoxin concentration (below 20 ppb). Third, in order to shorten the quantification duration and simplify the detection process, a novel aflatoxin detection array based on smectite-PAM nanocomposite and an improved fluorometric quantification method were developed. Through a microfluidic chip, the reaction time was reduced to 10~20min. Two concentration levels (20~80ppb/5~15ppb) of aflatoxin B1 spiked corn extraction solutions were tested. In the fluorometric quantification step, a common lab-use 365 nm ultraviolet lamp replaced the spectrofluorometer which simplified and accelerated the process.
566

Layer-by-Layer Nanocoatings with Flame Retardant and Oxygen Barrier Properties: Moving Toward Renewable Systems

Laufer, Galina 1985- 14 March 2013 (has links)
Numerous studies have focused on enhancing the flame retardant behavior of cotton and polyurethane foam. Some of the most commonly used treatments (e.g., brominated compounds) have raised concerns with regard to toxicity and environmental persistence. These concerns have led to significant research into the use of alternative approaches, including polymer nanocomposites prepared from more environmentally benign nanoparticles. These particles migrate to the surface from the bulk during fire exposure to form a barrier on the surface that protects the underlying polymer. This theory of fire suppression in bulk nanocomposites inspired the use of layer-by-layer (LbL) assembly to create nanocoatings in an effort to produce more effective and environmentally-benign flame retardant treatments. Negatively charged silica nanoparticles of two different sizes were paired with either positively charged silica or cationic polyethylenimine (PEI) to create thin film assemblies. When applying these films to cotton fabric, all coated fabrics retained their weave structure after being exposed to a vertical flame test, while uncoated cotton was completely destroyed. Micro combustion calorimetry confirmed that coated fabrics exhibited a reduced peak heat release rate, by as much as 20% relative to the uncoated control. Even so, this treatment would not pass the standard UL94 vertical flame test, necessitating a more effective treatment. Positively- charged chitosan (CH) was paired with montmorillonite (MMT) clay to create a renewable flame retardant nanocoating for polyurethane foam. This coating system completely stops the melting of a flexible polyurethane foam when exposed to direct flame from a butane torch, with just 10 bilayers (~ 30 nm thick). The same coated foam exhibited a reduced peak heat release rate, by as much as 52%, relative to the uncoated control. This same nanobrick wall coating is able to impart gas barrier to permeate plastic film. Multilayered thin films were assembled with "green" food contact approved materials (i.e., chitosan, polyacrylic acid (PAA) and montmorillonite clay). Only ten CH-PAA-CH-MMT quadlayers (~90 nm thick) cause polylactic acid (PLA) film to behave like PET in terms of oxygen barrier. A thirty bilayer CH-MMT assembly (~100 nm thick) on PLA exhibits an oxygen transmission rate (OTR) below the detection limit of commercial instrumentation (<= 0.005 cm^3/(m^2*day*atm)). This is the same recipe used to impart flame retardant behavior to foam, but it did not provide effective FR to cotton fabric, so a very different recipe was used. Thin films of fully renewable electrolytes, chitosan and phytic acid (PA), were deposited on cotton fabric in an effort to reduce flammability through an intumescent effect. Altering the pH of aqueous deposition solutions modifies the composition of the final nanocoating. Fabrics coated with highest PA content multilayers completely extinguished the flame and reduced peak heat release (pkHRR) and total heat release of 60% and 76%, respectively. This superior performance is believed to be due to high phosphorus content that enhances the intumescent behavior of these nanocoatings.
567

Binding of Self-assembling Peptides to Oligodeoxynucleotides

Wang, Mei January 2007 (has links)
This thesis is an experimental investigation on the binding of self-assembling peptides to oligodeoxynucleotides (ODNs) and the characterization of the resulting peptide-ODN complexes/aggregates, the first key step in the development of a peptide-based gene delivery system. Effects of pH, charge distribution along the peptide backbone, and oligonucleotide sequences on the peptide-ODN binding were investigated by a series of physicochemical methods. UV-Vis absorption and fluorescence anisotropy experiments demonstrate that aggregates are formed after mixing the peptide and ODN in aqueous solution. The aggregates in solution can be centrifuged out. Based on this property, the fraction of ODNs incorporated in the peptide-ODN aggregates can be obtained by comparing the UV-Vis absorption of the solution before and after centrifugation. Binding isotherms are generated by a binding density function analysis of the UV absorbance results. The binding parameters are extracted from the analysis of the binding isotherms based on the McGhee and von Hippel model. Equilibrium binding parameter studies show that the binding of two self-assembling peptides, EAK16-II and EAK 16-IV, to model single and double-stranded ODNs at pH 4 is stronger than at pH 7, and that no binding occurs at pH 11. These results demonstrate that electrostatic interactions play an important role in the EAK-ODN binding because EAKs are more positively charged at low pH. EAKs bind more strongly to dG16 than to the other ODN sequences dC16 and dGC16. This demonstrates that the hydrogen bond might be involved because they promote the binding of the lysine residues of the peptide to dG16 to a greater extent than to dC16. The charge distribution along the peptides is found to have an effect on the binding. EAK16-IV, whose positively charged residues are clustered at one end of the peptide, binds to the ODNs more strongly than EAK16-II, whose positively charged residues are distributed throughout the peptide chain, at the same pH. The binding process of EAKs to the ODNs was investigated by fluorescence anisotropy and static light scattering experiments. The results show that individual EAK and ODN molecules complex first, followed by the aggregation of these complexes into large aggregates. The nature of the resulting peptide-ODN complexes/aggregates is examined by UV-Vis absorption, fluorescence anisotropy, and PAGE experiments. The results demonstrate that free EAK, free ODNs, and small EAK-ODN complexes, which can not be centrifuged out, exist in the supernatant, and that large aggregates are collected in the pellets after centrifugation of the solution. The size of the resulting EAK-ODN complexes/aggregates measured by AFM and DLS is around a few hundreds of nanometers at low EAK concentrations. The accessibility of the ODNs to the quencher in the solution is reduced by 40 % and 60 % after binding to EAK16-II and EAK16-IV, respectively, as determined by fluorescence quenching experiments on EAK-ODN mixture solutions. An ODN protection from Exonuclease 1 degradation is provided by the EAK16-II or EAK16-IV matrix when they are mixed with the ODNs at pH 4. However, the ODNs are protected to a much lower degree when the EAK-ODN aggregates are prepared at pH 7. The EAK-ODN aggregates prepared at pH 7 are found to dissociate more easily than those prepared at pH 4 when they are incubated with exonuclease I solution at pH 9.5. These results suggest that the ODN protection afforded by the EAK-ODN aggregates is correlated with their structural stability after being incubated with the nuclease solution. The stability of the EAK-ODN aggregates after dilution is determined by UV-Vis absorption. No detectable dissociation of the aggregates is observed over 20 hrs after a 5- and 10-fold dilution of the solution in the same buffer used for their preparation. The EAK-ODN aggregates remain stable after the solutions are centrifuged, and re-dissolved in fresh buffer solutions. The ability of an EAK matix to protect ODNs from nuclease degradation together with its biocompatibility and low-toxicity suggests that EAK self-assembling peptides could be used as carriers for gene delivery.
568

The Role of Bacteriophage Lambda gpK in Tail Assembly and Host Cell Entry

Coburn, David Lawson 06 December 2011 (has links)
The bacteriophage lambda tail protein gpK is required for tail assembly. The activity of the protein can be found at the assembling tail tip and is believed to be localized to this structure. GpK is a 27 kDa protein that has sequence identity to two families of proteins: the Mov34 family of peptidases and the NlpC/P60 family of peptidoglycan endopeptidases. Point substitutions and complementation data confirm that gpK possesses each of these domains and that they can function in trans. When the Mov34 domain is inactivated tail assembly is disrupted whereas when the NlpC/P60 domain is inactivated tails assemble but are inactive. Evidence is presented here that the C-terminal domain possesses lytic activity in isolation but not when part of the full-length protein.
569

Mechanical integrity of myosin thick filaments of airway smooth muscle in vitro: effects of phosphoryation of the regulatory light chain

Ip, Kelvin 11 1900 (has links)
Background and aims: It is known that smooth muscle possesses substantial mechanical plasticity in that it is able to adapt to large changes in length without compromising its ability to generate force. It is believed that structural malleability of the contractile apparatus underlies this plasticity. There is strong evidence suggesting that myosin thick filaments of the muscle are relatively labile and their length in vivo is determined by the equilibrium between monomeric and filamentous myosin. The equilibrium in turn is governed by the state of phosphorylation of the 20-kD regulatory myosin light chain (MLC20, or RLC). It is known that phosphorylation of the myosin light chain favors formation of the filaments; it is not known how the light chain phosphorylation affects the lability of the filaments. The major aim of this thesis was to measure the mechanical integrity of the filaments formed from purified myosin molecules from bovine airway smooth muscle, and to determine whether the integrity was influenced by phosphorylation of the myosin light chain. Methods: Myosin was purified from bovine trachealis to form filaments, in ATP containing zero-calcium solution during a slow dialysis that gradually reduced the ionic strength. Sufficient myosin light chain kinase and phosphatase, as well as calmodulin, were retained after the myosin purification and this enabled phosphorylation of RLC within 20-40 s after addition of calcium to the filament suspension. The phosphorylated and non-phosphorylated filaments were then partially disassembled by ultrasonification. The extent of filament disintegration was visualized and quantified by atomic force microscopy. Results: RLC phosphorylation reduced the diameter of the filaments and rendered the filaments more resistant to ultrasonic agitation. Electron microscopy revealed a similar reduction in filament diameter in intact smooth muscle when the cells were activated. Conclusion: Our results suggest that RLC phosphorylation is a key regulatory step in modifying the structural properties of myosin filaments in smooth muscle, where formation and dissolution of the filaments are required in the cells’ adaptation to different cell length.
570

Synthesis of Nanoparticles and Nanostructured Materials by Self-Assembly

Varón Izquierdo, Miriam 31 May 2012 (has links)
L’aparició de noves propietats químiques i físiques dins l’escala nanomètrica és un dels motius principals que fa necessari l’estudi de nanopartícules de diferents metalls, del seus òxids i dels seus aliatges, pel disseny de les seves futures aplicabilitats. Aquesta tesi estudia dos blocs temàtics: i) la síntesi i ii) l’autoensamblatge de nanopartícules metàl·liques. En el primer bloc, s’estudien els aspectes més rellevants de la preparació de nanopartícules metàl·liques (constituïdes per un o dos metalls diferents) de mida i forma controlada. Es desenvolupa les síntesis de diferents partícules magnètiques, i s’obtenen dispersions col·loïdals de nanopartícules de cobalt (Co) i alguns del seus òxids, així com d’ or (Au), platí (Pt) i alguns dels seus aliatges. Les nanopartícules de Co estan rebent un interès creixent degut a les propietats magnètiques que presenta el material, la qual cosa les fa molt interessants per a un nombre elevat d’aplicacions tecnològiques. Però la sensibilitat del material en front l’oxidació (la qual produeix canvis en les seves propietats magnètiques) requereix que es faci un estudi profund d’aquests processos. En aquest treball, s’han sintetitzat nanopartícules de Co de diferents mides i s’han estudiat els paràmetres que afecten les seves propietats magnètiques. A més, s’han estudiat els processos d’oxidació de les nanopartícules de Co, que han generat tant nanopartícules core/shell (nucli/recobriment) Co/CoO com nanopartícules “hollow” (buides) d’òxid de Co. Les nanopartícules de Pt també són de gran interès degut a que presenten propietats òptiques i catalítiques úniques. Les seves propietats catalítiques depenen fortament dels seus àtoms superficials i, per tant, de la mida i de la forma de les nanopartícules. En aquesta tesi s’ha dut a terme la síntesi de nanopartícules de Pt de diferent mida i forma mitjançant el control de diferents paràmetres durant el procés sintètic (com la temperatura, els lligands i els temps de reacció). En particular, s’ha determinat la incorporació de traces metàl·liques durant la síntesis i el seu efecte en el control de la forma final de la nanopartícula. Finalment, l’or es un dels materials més estudiats en l’escala nanomètrica degut a les seves propietats òptiques i el seu caràcter inert, que fa que sigui un dels materials més utilitzats en aplicacions biològiques. Les propietats òptiques són especialment importants en materials amb “aspect ratios” (relació longitud/amplada). En aquesta tesi s’han sintetitzat Au “rods” (barres) de gran llargada utilitzant nanopartícules de Pt com a catalitzador de la reacció, i se n’ha explorat la llargada que poden aconseguir, relacionades amb les seves possibles aplicacions. En el segon bloc, s’estudia l’ús de les nanopartícules en la preparació de materials nanoestructurats mitjançant autoensamblatge. S’ha observat com depenent de la naturalesa i la forma de les nanopartícules, es creen diferents patrons. En particular, aquesta part es centra principalment en la utilització de nanopartícules de Co com a unitats de construcció de estructures autoensamblades, degut a les seves propietats magnètiques. S’ha estudiat l’autoensamblatge de nanopartícules de Co a sobre de diferents substrats d’interès tecnològic i les forces que intervenen en el procés. En particular, en destaquem: l’estudi de l’autoensamblatge de les partícules de Co sobre grafit i sobre substrats de silici. Finalment, s’ha estudiat la influència de les propietats en el procés d’autoensamblatge de nanopartícules de Co, així com l’estructura magnètica dels assemblats, mitjançant holografia electrònica i microscopia Lorentz. S’ha estudiat la variació de l’estructura magnètica dels diferents assemblats en funció de la seva mida total, i també en funció de la temperatura. L’estudi de les propietats individuals de les nanopartícules de Co dins l’assemblat és possible mitjançant les dues tècniques mencionades prèviament, i s’han observat els efectes col·lectius entre totes les partícules integrants de les estructures. Els resultats obtinguts indiquen que l’ordenació ferromagnètica dipolar és molt persistent en les estructures, fins i tot amb un elevat grau de desordre a la xarxa de partícules. / The emergence of new chemical and physical properties at the nanoscale is one of the main reasons that make necessary the study of nanoparticles of different metals, their oxides and alloys for different applications. In this thesis, two thematic blocks are studied: i) the synthesis and ii) the self- assembly of metallic nanoparticles. In the first block, the more relevant aspects in the preparation of metallic and bimetallic nanoparticles of controlled size and shape are studied. The syntheses of different metal nanoparticles are developed, and monodisperse colloidal suspensions of Co metal particles and some of their oxides, as well as Au, Pt and some alloy nanoparticles are obtained. Co particles are receiving much interest due to their magnetic properties of the material, which turn them interesting for a number of technological applications. On the other hand, the sensitivity of the material to oxidation (with a consequent change in its properties) makes necessary a deeper study of these processes. In this work, Co magnetic nanoparticles of different sizes have been synthesized and the parameters that affect the variation of their magnetic properties have been studied. Moreover, the oxidation processes of the Co nanoparticles have been also studied, generating both Co/CoO core/shell and CoO hollow nanoparticles. Pt nanoparticles are also a subject of interest due to their unique optical and catalytic properties. Their catalytic properties strongly depends on their surface atoms and, therefore, on the size and shape of the particles. During this thesis, different size and shape Pt nanoparticles have been synthesized by controlling different parameters during the synthetic process (i.e. temperature, surfactants, and reaction times). In particular, the incorporation of metal “traces” during the synthesis process, and their effect on the control of the shape are determined. Finally, Au is one of the most studied materials at the nanometer scale due to its optical properties and its inertness, making it one of the most used materials in biological applications. The optical properties are particularly important in materials with aspect ratios (length/width). In this thesis, the synthesis of extra long Au rods (bars) using Pt nanoparticles as the reaction catalyst have been synthesized, and the length that they can reach have been also explored for its potential applications (e.g. as connections between electrodes). In the second block, the use of nanoparticles for the preparation of nanostructured materials via self-assembly processes is studied. It is observed how, depending of both the nature and the shape of the nanoparticle, different patterns are created. In particular, this part focuses mainly on the use of Co nanoparticles as building block units for construction of self-assembled structures, due to their magnetic properties. The self-assembly of Co nanoparticles onto different substrates with technological interest and the forces involved in the process have been studied. Particularly, the works to be highlighted are the study of the self-assembly of Co on graphite and on silicon substrates due to dipolar interactions. Finally, the influence of the magnetic properties in the self-assembly process of Co nanoparticles, and the magnetic structure of the formed assemblies, are studied by electron holography and Lorentz microscopy. The variation of the magnetic structure of the different self-assembled structures has been studied as a function of both the assembly total size and the temperature. The study of the individual and collective behavior of the Co nanoparticles on the assembly is possible with these techniques, and collective effects among the whole NPs forming the structures have been observed. The obtained results showed that dipolar ferromagnetism order is extremely persistent even under a high degree of lattice disorder.

Page generated in 0.0496 seconds