• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1623
  • 315
  • 292
  • 274
  • 216
  • 73
  • 56
  • 48
  • 30
  • 26
  • 11
  • 9
  • 8
  • 7
  • 7
  • Tagged with
  • 3584
  • 1299
  • 430
  • 395
  • 341
  • 252
  • 222
  • 206
  • 199
  • 197
  • 184
  • 167
  • 166
  • 165
  • 147
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Supramolecular organization of conjugated materials: relationship between the microscopic morphology and the optoelectronic properties

Surin, Mathieu 05 October 2005 (has links)
Notre thèse consiste en l’étude des relations entre la morphologie microscopique et les propriétés optoélectroniques de films minces de matériaux organiques pi-conjugués. En particulier, nous avons porté notre attention sur des oligomères, polymères et copolymères pi-conjugués à base de thiophène et/ou de fluorène, particulièrement intéressants pour des applications dans des dispositifs optiques et électroniques « plastiques ». Nous avons montré que l’assemblage des molécules peut mener à des (nano)structures de taille et de forme spécifiques, par exemple des structures fibrillaires (unidimensionnelles), des plaquettes (bidimensionnelles), ou des agrégats non-texturés, en fonction de l’architecture moléculaire, du solvant et du substrat utilisés dans la préparation des films minces. La modélisation moléculaire nous a permis d’une part de proposer des modèles d’assemblages de molécules au sein des différentes structures, et d’autre part de mieux comprendre l’importance des interactions molécule-molécule et molécule-surface. Nous avons ainsi pu établir les relations entre l’ordre structural au sein de ces dépôts minces et les propriétés optiques et électroniques, en étudiant notamment la photoluminescence à l’état solide ou le transport de charges dans des transistors à effet de champ. Nous avons également eu recours à des techniques de lithographie "douce" pour contrôler l’assemblage des molécules conjuguées, ce qui a permis d’améliorer les performances des dispositifs électroniques. Globalement, les résultats obtenus apportent une meilleure compréhension des relations entre l’organisation des molécules conjuguées à l’état solide et les propriétés optoélectroniques des matériaux conjugués semiconducteurs.
552

Toward a Brain-like Memory with Recurrent Neural Networks

Salihoglu, Utku 12 November 2009 (has links)
For the last twenty years, several assumptions have been expressed in the fields of information processing, neurophysiology and cognitive sciences. First, neural networks and their dynamical behaviors in terms of attractors is the natural way adopted by the brain to encode information. Any information item to be stored in the neural network should be coded in some way or another in one of the dynamical attractors of the brain, and retrieved by stimulating the network to trap its dynamics in the desired item’s basin of attraction. The second view shared by neural network researchers is to base the learning of the synaptic matrix on a local Hebbian mechanism. The third assumption is the presence of chaos and the benefit gained by its presence. Chaos, although very simply produced, inherently possesses an infinite amount of cyclic regimes that can be exploited for coding information. Moreover, the network randomly wanders around these unstable regimes in a spontaneous way, thus rapidly proposing alternative responses to external stimuli, and being easily able to switch from one of these potential attractors to another in response to any incoming stimulus. Finally, since their introduction sixty years ago, cell assemblies have proved to be a powerful paradigm for brain information processing. After their introduction in artificial intelligence, cell assemblies became commonly used in computational neuroscience as a neural substrate for content addressable memories. Based on these assumptions, this thesis provides a computer model of neural network simulation of a brain-like memory. It first shows experimentally that the more information is to be stored in robust cyclic attractors, the more chaos appears as a regime in the background, erratically itinerating among brief appearances of these attractors. Chaos does not appear to be the cause, but the consequence of the learning. However, it appears as an helpful consequence that widens the network’s encoding capacity. To learn the information to be stored, two supervised iterative Hebbian learning algorithm are proposed. One leaves the semantics of the attractors to be associated with the feeding data unprescribed, while the other defines it a priori. Both algorithms show good results, even though the first one is more robust and has a greater storing capacity. Using these promising results, a biologically plausible alternative to these algorithms is proposed using cell assemblies as substrate for information. Even though this is not new, the mechanisms underlying their formation are poorly understood and, so far, there are no biologically plausible algorithms that can explain how external stimuli can be online stored in cell assemblies. This thesis provide such a solution combining a fast Hebbian/anti-Hebbian learning of the network's recurrent connections for the creation of new cell assemblies, and a slower feedback signal which stabilizes the cell assemblies by learning the feed forward input connections. This last mechanism is inspired by the retroaxonal hypothesis.
553

Novel surfactants for the production of functional nanostructured materials via the ionic self-assembly (ISA) route = Neuartige Tenside für die Synthese funktioneller nanostrukturierter Materialien durch ionische Selbsorganisation

Franke, Danielle January 2005 (has links)
In recent years, the aim of supramolecular syntheses is not only the creation of particular structures but also the introduction of specific functions in these supramolecules. The present work describes the use of the ionic self-assembly (ISA) route to generate nanostructured materials with integrated functionality. Since the ISA strategy has proved to be a facile method for the production of liquid-crystalline materials, we investigated the phase behaviour, physical properties and function of a variety of ISA materials comprising a perylene derivative as the employed oligoelectrolyte. Functionality was introduced into the materials through the use of functional surfactants. <br><br> In order to meet the requirements to produce functional ISA materials through the use of functional surfactants, we designed and synthesized pyrrole-derived monomers as surfactant building blocks. Owing to the presence of the pyrrole moiety, these surfactants are not only polymerizable but are also potentially conductive when polymerized. We adopted single-tailed and double-tailed N-substituted pyrrole monomers as target molecules. Since routine characterization analysis of the double-tailed pyrrole-containing surfactant indicated very interesting, complex phase behaviour, a comprehensive investigation of its interfacial properties and mesophase behavior was conducted. The synthesized pyrrole-derived surfactants were then employed in the synthesis of ISA complexes. The self-assembled materials were characterized and subsequently polymerized by both chemical and electrochemical methods. The changes in the structure and properties of the materials caused by the in-situ polymerization were addressed.<br><br> In the second part of this work, the motif investigated was a property rather than a function. Since chiral superstructures have obtained much attention during the last few years, we investigated the possibility of chiral ISA materials through the use of chiral surfactants. Thus, the work involved synthesis of novel chiral surfactants and their incorporation in ISA materials with the aim of obtaining ionically self-assembled chiral superstructures. <br><br> The results and insights presented here suggest that the presented synthesis strategy can be easily extended to incorporate any kind of charged tectonic unit with desired optical, electrical, or magnetic properties into supramolecular assemblies for practical applications. / Supramolekulare Chemie zielt auf den Aufbau großer Moleküle und neuer Materialien aus kleineren Einheiten. Durch supramolekulare Wechselwirkungen d.h. nicht-kovalente Bindungen, können definierte Ordnungen von Molekülverbänden in Größen von mehreren 100 Mikrometern hergestellt werden. Diese Wechselwirkungen und die daraus resultierenden Anordnungen von Molekülen bestimmen die für Anwendungen relevanten makroskopischen Materialeigenschaften. <br><br> Es gibt viele verschiedene Wechselwirkungen, die in der Supramolekularen Chemie angewendet werden können. Eine davon ist die ionische Wechselwirkung, die in dieser Arbeit als Triebkraft für die Herstellung supramolekularer Materialien verwendet wird. Diese Strategie wurde vor kurzem ISA (Ionic-Self-Assembly, d.h. Ionische Selbsorganisation) genannt. <br><br> Die vorliegende Arbeit beschäftigt sich mit der Herstellung funktioneller Nanomaterialen durch die Anwendung der ISA-Strategie. Da sich die ISA-Strategie als einfache Methode für die Produktion von Flüssigkristallen herausstellte, untersuchten wir die Eigenschaften vieler ISA-Materialen, die einen Farbstoffbaustein integriert haben. Die Funktion der Materialien wurde hierbei durch die Verwendung funktioneller Tenside geschaffen. Um die Anforderungen für die Produktion funktioneller ISA-Materialen durch die Nutzung funktioneller Tenside sicherzustellen, wurden Pyrrol-Monomere als Tenside hergestellt. Durch die Pyrrol-Einheiten sind die Tenside polymerisierbar und zeigen danach Potential für Leitfähigkeit. <br><br> Es wurden Pyrrol-Tenside sowohl mit Einzel- als auch mit Doppelketten synthetisiert. Da die Standardcharakterisierung des Doppelketten-Tensids ein interessantes Phasenverhalten zeigte, wurden umfassende Untersuchungen der Grenzflächeneigenschaften und des mesophasen Verhaltens durchgeführt. Beide Tenside wurden dann in der Produktion von ISA-Materialien verwendet. Die hergestellten Materialen wurden charakterisiert und konnten durch die Pyrrol-Einheit sowohl chemisch als auch elektrochemisch polymerisiert werden. Die aus dieser Polymerisierung resultierenden Änderungen der Eigenschaften, Struktur und Function der Materialen wurden ebenfalls untersucht. <br><br> Der zweite Teil dieser Arbeit klärt Nutzungsmöglichkeiten chiraler Tenside für die Herstellung chiraler ISA-Strukturen. Obwohl Chiralität keine eigentliche Funktion sondern eine Eigenschaft ist, haben chirale Strukturen in den letzten Jahren viel Aufmerksamkeit bekommen. Deshalb wurden, mit dem Ziel chirale ISA-Strukturen zu erhalten, neue chirale Tenside hergestellt und diese als Bausteine in ISA-Materialien benutzt.<br><br> Die mit dieser Arbeit gewonnenen Ergebnisse und neuen Einsichten zeigen, dass die ISA-Strategie leicht erweitert werden kann, um jede Art von Bausteine zu integrieren. Dadurch können nanostukturierte Materialien mit gewünschten spezifischen optischen, elektrischen oder elektromagnetischen Eigenschaften für praktische Anwendungen geschaffen werden.
554

V-ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C

Voss, Martin, Blenau, Wolfgang, Walz, Bernd, Baumann, Otto January 2009 (has links)
The activity of vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT). 5-HT induces, via protein kinase A, the phosphorylation of V-ATPase subunit C and the assembly of V-ATPase holoenzymes. The protein phosphatase responsible for the dephosphorylation of subunit C and V-ATPase inactivation is not as yet known. We show here that inhibitors of protein phosphatases PP1 and PP2A (tautomycin, ocadaic acid) and PP2B (cyclosporin A, FK-506) do not prevent V-ATPase deactivation and dephosphorylation of subunit C. A decrease in the intracellular Mg2+ level caused by loading secretory cells with EDTA-AM leads to the activation of proton pumping in the absence of 5-HT, prolongs the 5-HT-induced response in proton pumping, and inhibits the dephosphorylation of subunit C. Thus, the deactivation of V-ATPase is most probably mediated by a protein phosphatase that is insensitive to okadaic acid and that requires Mg2+, namely, a member of the PP2C protein family. By molecular biological techniques, we demonstrate the expression of at least two PP2C protein family members in blowfly salivary glands. © 2009 Wiley Periodicals, Inc.
555

Microfluidic devices for biotechnology and organic chemical applications

Andersson, Helene January 2001 (has links)
Imagine if you could combine the power and capabilities ofan entire laboratory in the palm of your hand. Advances inmicrofluidic chip technology promise to integrate andminiaturize multiple lab processes into a single palm-sizeddevice. The advantages of these lab-on-a-chip devices,sometimes also referred to as micro total analysis systems(µTAS), compared with conventional bench-scale systems arenumerous and wide ranging and include: less reagentconsumption, low manufacturing costs, increased performance,faster analysis, high sample throughput, integration andautomation possibilities, and disposability. However,microfluidic devices also present challenges such as theinterfacing to the macro world and detection limits. In this thesis the focus has been to develop novel discretemicrofluidic components for biotechnology and organic chemicalapplications with the goal to integrate them to formlab-on-chips. A flow-through filter-chamber device has beendesigned, manufactured and evaluated for chemical analysis onbeads. Passive liquid handling has been integrated on the chipin the form of hydrophobic valves at the inlet channels. Anarray format has also been developed to allow parallel analysisof multiple samples. The filter-chamber functions well forsingle nucleotide analysis using pyrosequencing. Initialevaluations on catalyst screening in the filter-chamber devicehas been performed. The suitability of valve-less micropumps for biochemicalapplications is presented. Fluids encountered in variousbiochemical methods, including living cells, that areproblematic for other micropumps have been pumped with goodperformance. This thesis also introduces expandablemicrospheres as a novel component in microfluidics includingapplications such as one-shot valves, micropositioning andsurface enlargement. A novel technique for bead immobilization in microfluidicdevices based on surface chemistry is presented in this thesis.Beads for both biochemical assays and organic chemistry havebeen self-sorted and self-assembled in line patterns as narrowas 5 µm on both structured and unstructured substrates.This method will greatly facilitate the generation of screeningplatforms, for example. To develop a microfluidic device for catalysis-on-chip,ligands for asymmetric catalysis have successfully beenimmobilized in silicon channels by consecutive microcontactprinting, which is a novel technique presented in thisthesis. <b>Keywords:</b>microfluidics, beads, microspheres, silicon,filter-chamber, flow-through, bead trapping, DRIE, passivevalves, fluorocarbon, microfluidic array, adhesive bonding,valve-less micropump, microcontact printing, PDMS,self-assembly, self-sorting, DNA, SNP, pyrosequencing,allele-specific extension, expandable microspheres, catalysis,chiral ligand, monolayer, miniaturization, lab-on-a-chip,µTAS.
556

Developing high performance manufacturing systems

Karlsson, Anders January 2002 (has links)
The work detailed in this dissertation relates to thedevelopment of high performance manufacturing systems. Theperformance factor aimed for is especially flexibility, butthere is an intention of making the results adaptable to focuson performance factors of the readers or users choice. Thefocus of the presented research is not only to provide meansfor accomplishing manufacturing that can handle changes butalso to accomplish flexibility in another area. The resultsshould be applicable in many different situations. The researchhas been divided into three parts: the further development of amanufacturing strategy, the development of a base for amanufacturing system design method and the development of amanufacturing control system. The developed strategy is called Assembly-InitiatedProduction (AIP). An implementation of the strategy shouldprovide high manufacturing system flexibility but at the sametime contribute to the lowering of inventory levels andlead-times. Different solutions coupled to technicalrequirements found are also discussed. The design method research focuses on basic manufacturingsystem properties and the possibility of expressing theseproperties by using simple combinable abstract units calledconcepts. The principle is the same as in physics where realworld phenomena may be expressed by using standard concepts asfor example time and mass. The intended use of the results isin an early manufacturing system design phase. The method isnot directly linked to the AIP strategy, but could be used forimplementing it. Production Planning and Control (PPC) is an important partof a manufacturing system. After having reviewed current PPCpractices, a need for a factory floor PPC system workingregardless of factory floor layout, was identified. Based ontheoretical and industrial studies, the suggested solution is acomputerised, decentralised control system, physicallyseparated from the PPC/ERP system. In order to be able to makequick changes in the schedule, to obtain flexibility and toprovide the organisation with a tool for manufacturing controland decision-making, the system works in real time to provideaccurate and valid data.
557

Prerequisites for Development of Products Designed for Efficient Assembly - a Study about Making Knowledge Productive in the Automobile Inustry

Moestam Ahlström, Lena January 2002 (has links)
This thesis deals with the development of the competence tocreate assembly efficient products. The assembly-relatedknowledge that is resident within an organisation is ofinestimable value and should be used, refined and developed inorder to obtain assembly efficient products. The question ishow competence development can be promoted organisationally.This thesis has adopted the working hypothesis thatmodularisation promotes competence in the development ofassembly efficient products. This position is based on theliterature regarding competence development,competence-promoting organisations, and concurrentengineering. The empirical research reported in this thesis is along-term case study carried out at Volvo Car Corporation. Inthe licentiate thesis that preceded this doctoral thesis, itwas suggested that assembly work should be based on modules.The further topics researched in this thesis includeexamination of a modularisation process, examination of thecommunication interface between the assembly organisation andthe product development organisation, the effects ofmodularisation on the assembly process, and an investigation ofthe development of two assembly efficient products. The product of the research is a model representing theorganisational prerequisites for developing competence in thecreation of assembly efficient products. The key elements inthe model are a transparent organisational structure, clearintention in the organisation, and accommodation ofcross-functional exchange. Modularisation is a means ofcreating a transparent organisational structure that makes itpossible for members of the organisation to understand thecontext in which they work, which is a basic requirement fordeveloping competence. A structure for cross-functionalcooperation should be put in place to facilitatecross-functional exchange and learning. To succeed indeveloping assembly efficient products, an organisation mustalso clear signal that this is its intention. Visions, goalsand strategies must express this ambition. Only then will themembers of the organisation have the mindset that enables themto use their full potential to develop competence in creatingassembly efficient products. <b>Keywords:</b>competence-promoting organisation, transparentorganisation, modularisation, assembly efficiency, automobileindustry
558

Nanopatterning by Swift Heavy Ions

Skupinski, Marek January 2006 (has links)
Today, the dominating way of patterning nanosystems is by irradiation-based lithography (e-beam, DUV, EUV, and ions). Compared to the other irradiations, ion tracks created by swift heavy ions in matter give the highest contrast, and its inelastic scattering facilitate minute widening and high aspect ratios (up to several thousands). Combining this with high resolution masks it may have potential as lithography technology for nanotechnology. Even if this ‘ion track lithography’ would not give a higher resolution than the others, it still can pattern otherwise irradiation insensitive materials, and enabling direct lithographic patterning of relevant material properties without further processing. In this thesis ion tracks in thin films of polyimide, amorphous SiO2 and crystalline TiO2 were made. Nanopores were used as templates for electrodeposition of nanowires. In lithography patterns are defined by masks. To write a nanopattern onto masks e-beam lithography is used. It is time-consuming since the pattern is written serially, point by point. An alternative approach is to use self-assembled patterns. In these first demonstrations of ion track lithography for micro and nanopatterning, self-assembly masks of silica microspheres and porous alumina membranes (PAM) have been used. For pattern transfer, different heavy ions were used with energies of several MeV at different fluences. The patterns were transferred to SiO2 and TiO2. From an ordered PAM with pores of 70 nm in diameter and 100 nm inter-pore distances, the transferred, ordered patterns had 355 nm deep pores of 77 nm diameter for SiO2 and 70 nm in diameter and 1,100 nm deep for TiO2. The TiO2 substrate was also irradiated through ordered silica microspheres, yielding different patterns depending on the configuration of the silica ball layers. Finally, swift heavy ion irradiation with high fluence (above 1015/cm2) was assisting carbon nanopillars deposition in a PAM used as template.
559

The Self-Assembly of Discotic Liquid Crystals.

Chiang, Cheng-Yan 02 August 2007 (has links)
Discotic liquid crystals (DLCs), which consist of disc-like molecules, are known to be able to form nematic and columnar mesophases through self-assembly. Because of the high electric charge mobility in one-dimension, DLCs are found to have uses in making electronic and photonic devices, such as organic light emitting diode, photovoltaic and molecular wires. In order to achieve better performance of these applications, it is essential to obtain the desired alignment of the DLCs. The purpose of this study is to investigate the stacking of disk-like molecules and to control their alignment. The materials used in the present studies are HDBP-8 and LC10. In this thesis, we will show that the stack of disk-like molecules is strongly influenced by temperature. We will also discuss how the molecules stacking is influenced by surface free energy. The disk-like molecules tend to stack with face-on when the surface free energy of the substrates is high. On a surface with lower surface free energy, molecules tend to stack with edge-up. In the latter part of the research, substrates are specially treated to have different surface free energies, and molecular stack on these substrates is observed.
560

Design and Structural Characterization of Self-Assembling Triple Helical Heterotrimers

Fallas Valverde, Jorge 05 June 2013 (has links)
Design of self-assembling ABC-type collagen triple helical heterotrimers is challenging due to the number of competing species that can be formed in ternary mixture of peptides with a high propensity to fold into triple helices and the fact that well understood rules for pair-wise amino acid stabilization of the canonical collagen triple helix have remained elusive. Given the required one amino acid stagger between adjacent peptide strands in this fold, a ternary mixture of peptides can form as many as 27 triple helices with unique composition or register. Previously we have demonstrated that electrostatic interactions can be used to bias the helix population towards a desired target but the presence of competing states in mixtures has remained an outstanding problem. In this work we use high-resolution structural biology techniques to do a detailed study of stabilizing pair-wise interactions between positively and negatively charged amino acids in triple helices. Two types of contacts with distinct sequence requirements depending on the relative stagger of the interacting chains are observed: axial and lateral. Such register-specific interactions are crucial for the understanding of the registration process of collagens and the overall stability of proteins in this family. Using this knowledge we developed distinct design strategies to improve the specificity of our designed systems towards the desired ABC heterotrimeric target state. We validate our strategies through the synthesis and characterization of the designed sequences and show that they self-assemble into a highly stable ABC triple helices with control over composition in the case of the rational approach and with control over both composition and register in the case of the computational approach.

Page generated in 0.0619 seconds