Spelling suggestions: "subject:"astroparticules"" "subject:"astroparticle""
11 |
Sinais experimentais de matéria escura supermassiva e fortemente interagente / Experimental signal of strongly interacting supermassive dark matterSilva, Leandro José Beraldo e 03 November 2010 (has links)
Há várias evidências experimentais da existência de matéria escura no universo. Apesar destas evidências, pouco se sabe sobre sua constituição, sabendo-se apenas que interage gravitacionalmente, mas não eletromagneticamente. Neste projeto, investigamos a possibilidade da matéria escura ser composta por partículas supermassivas e fortemente interagentes (Simpzillas). Para isto determinamos o sinal que deve ser deixado no telescópio IceCube por neutrinos resultantes de aniquilações de matéria escura no Sol. Após determinarmos o espectro de neutrinos no centro do Sol, simulamos sua propagação até a superfície, depois até a Terra e através da Terra até o detector. Comparamos então estes resultados com os fornecidos pelo IceCube. Esta comparação permite testar uma região do espaço de fase massa versus seção de choque previamente não-excluída por outros tipos de experiência que não telescópios de neutrinos. Como resultado, concluímos que partículas supermassivas e fortemente interagentes não podem constituir a matéria escura. / There are many experimental evidences for the existence of dark matter in the universe. Despite these evidences, there is no knowledge about its constitution other than the fact that it interacts gravitationally but not electromagnetically. In this project, we investigate the possibility that dark matter is composed of strongly interacting massive particles (Simpzillas). We determine the expected signal in the IceCube telescope from Simpzilla annihilation in the center of the Sun. We first determine the neutrino spectrum in the core of the Sun. We then simulate its propagation through both the Sun and Earth, and finally the rate of neutrinos at the detector. A comparison of these results to the ones published by the IceCube collaboration covers a large region of the yet not excluded regions of the mass versus cross-section phase space. As a result, the possibility of Simpzillas composing the dark matter is ruled out.
|
12 |
The Fall and Rise of Antimatter: Probing Leptogenesis and Dark Matter ModelsVertongen, Gilles V.M.P. 25 September 2009 (has links)
Big Bang Nucleosynthesis (BBN), together with the analyses of the Cosmic Microwave Background (CMB) anisotropies, confirm what our day to day experience of life attests : antimatter is far less present than matter in the Universe. In addition, these observables also permit to evaluate that there exists about one proton for every 10^{10} photons present in the Universe. This is in contradiction with expectations coming from the standard hot big bang, where no distinction between matter and antimatter is made, and where subsequent annihilations would lead to equal matter and antimatter contents, at a level 10^{−10} smaller than the observed one. The Standard Model of fundamental interactions fails to explain this result, leading us to search for ‘Beyond the Standard Model’ physics.
Among the possible mechanism which could be responsible for the creation of such a matter asymmetry, leptogenesis is particularly attractive because it only relies on the same ingredients previously introduced to generate neutrino masses. Unfortunatelly, this elegant proposal suffers from a major difficulty : it resists to any tentative of being probed by our low energy observables. In this thesis, we tackle the problem the other way around and propose a way to falsify this mechanism. Considering the type-I leptogenesis mechanism, i.e. a mechanism based on the asymmetric decay of right-handed neutrinos, in a left-right symmetric framework, we show that the observation of a right-handed gauge boson W_R at future colliders would rule out any possibility for such mechanism to be responsible of the matter asymmetry present in our Universe.
Another intriguing question that analyses of the anisotropies of the CMB confirmed is the presence of a non-baryonic component of matter in our Universe, i.e. the dark matter. As hinted by observations of galactic rotation curves, it should copiously be present in our galactic halo, but is notoriously difficult to detect directly. We can take advantage on the fact that antimatter almost disappeared from our surroundings to detect the contamination of cosmic rays from standard sources the annihilation products of dark matter would produce.
The second subject tackled in this work is the study of the imprints the Inert Doublet Modem (IDM) could leave in (charged) cosmic rays, namely positrons, antprotons and antideuterons. This model, first proposed to allow the Bout-Englert-Higgs particle to evade the Electroweak Precision Test (EWPT) measurements, introduces an additional scalar doublet which is inert in the sense that it does not couple directly to fermions. This latter property brings an additional virtue to this additional doublet : since it interacts weakly with particles, it can play the role of dark matter. This study will be done in the light of the data recently released by the PAMELA, ATIC and Fermi-GLAST collaborations, which reported e^± excesses in two different energy ranges.
|
13 |
Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables / Les candidats supersymétriques à la matière noire à la lumière des contraintes provenant des observables en collisionneur et d'astroparticuleDa Silva, Jonathan 03 July 2013 (has links)
Le Modèle Standard de la physique des particules a été renforcé par la récente découverte du très attendu boson de Higgs. Le modèle standard cosmologique a lui relevé le défi de la haute précision des observations cosmologiques et des expériences d'astroparticules. Toutefois, ces deux modèles standards sont encore confrontés à plusieurs problèmes théoriques, comme le problème de naturalité dans le secteur de Higgs du Modèle Standard, ainsi que des problèmes observationnels à l'image des nombreuses preuves de l'existence d'un genre inconnu de matière, appelé Matière Noire, qui représenterait la majeure partie du contenu en matière de l'Univers. Les tentatives visant à résoudre ces problèmes ont conduit au développement de nouveaux modèles physiques au cours des dernières décennies. La supersymétrie est un de ces modèles qui traite du problème du réglage fin dans le secteur de Higgs et fournit de bons candidats à la Matière Noire. Les expériences actuelles de physique des hautes énergies et de haute précision offrent de nombreuses possibilités pour contraindre les modèles supersymétriques. C'est dans ce contexte que cette thèse s'inscrit. En considérant le Modèle Standard Supersymétrique Minimal (MSSM), l'extension supersymétrique la plus simple du Modèle Standard, et son candidat à la Matière Noire, le neutralino, il est montré que les contraintes obtenues en collisionneur pourraient fournir des informations sur une période de l'Univers jeune, l'ère inflationnaire. Il est également démontré que la Détection Indirecte de Matière Noire, en dépit de plusieurs inconvénients, peut se révéler être une technique efficace pour explorer les modèles de Matière Noire supersymétrique. Au-delà du MSSM il est montré que des caractéristiques uniques du candidat à la Matière Noire dans le NMSSM peuvent être explorées aux collisionneurs. L'étude d'un modèle supersymétrique avec une symétrie de jauge étendue, le UMSSM, est également développée. Les caractéristiques d'un autre candidat de la matière noire de ce modèle, le sneutrino droit, sont analysées. Des contraintes plus générales telles que celles provenant d'observables de basse énergie sont finalement prise en compte. / The Standard Model of particle physics has been strengthened by the recent discovery of the long-awaited Higgs boson. The standard cosmological model has met the challenge of the high precision observations in comology and astroparticle physics. However these two standard models face both several theoretical issues, such as the naturalness problem in the Higgs sector of the Standard Model, as well as observational issues, in particular the fact that an unknown kind of matter called Dark Matter accounts for the majority of the matter content in our Universe. Attempts to solve such problems have led to the development of New Physics models during the last decades. Supersymmetry is one such model which addresses the fine-tuning problem in the Higgs sector and provides viable Dark Matter candidates. Current high energy and high precision experiments give many new opportunities to probe the supersymmetric models. It is in this context that this thesis is written. Considering the Minimal Supersymmetric Standard Model (MSSM), the simplest supersymmetric extension of the Standard Model of particle physics, and its conventional Dark Matter candidate, the neutralino, it is shown that collider constraints could provide informations on the very early Universe at the inflation area. It is also demonstrated that the Indirect Detection of Dark Matter, despite several drawbacks, can be a powerful technique to probe supersymmetric Dark Matter models. Beyond the MSSM it is shown that unique characteristics of the Dark Matter candidate in the NMSSM could be probed at colliders. The study of a supersymmetric model with an extended gauge symmetry, the UMSSM, is also developed. The features of another Dark Matter candidate of this model, the Right-Handed sneutrino, are analysed. More general constraints such as those coming from low energy observables are finally considered in this model.
|
14 |
Les cascades électromagnétiques cosmologiques comme sondes du milieu intergalactique / Cosmological electromagnetic cascades as probe of the UniverseFitoussi, Thomas 13 October 2017 (has links)
Cette thèse vise à étudier le phénomène dit de " cascades électromagnétiques cosmologiques ". Ces cascades sont typiquement générées dans le milieu intergalactique par l'absorption de rayons gamma sur les photons du fond optique / UV et par la production de paires électron / positron associés. Ces leptons eux-mêmes interagissent avec les photons du fond diffus cosmologique via diffusion inverse Compton pour produire de nouveaux rayons gamma qui eux même peuvent s'annihiler, générant à partir d'un unique photon primaire toute une gerbe de photons et de particules secondaires. D'un point de vue observationnel, le développement de cette cascade introduit trois effets : une déformation du spectre à haute énergie, un retard temporel dans l'arrivée des rayons gamma et une extension de la taille apparente de la source. Les cascades électromagnétiques cosmologiques ont commencé à être étudiées dans les années soixante. Mais ce n'est qu'à partir des années 2010 avec l'arrivée du satellite Fermi (entre autres) et des observations dans la bande au GeV et au TeV que la discipline a explosé. Le phénomène est particulièrement important. D'une part il altère le spectre observé des sources rendant difficile la compréhension de la physique de ces dernières. D'autre part les cascades se développant dans le milieu extragalactique, elles sont très sensibles à la composition de ce dernier (fond diffus de photons, champ magnétique). Or ce milieu étant très ténu, il est difficile à étudier. Les cascades deviennent alors une formidable sonde pour accéder à sa compréhension et pouvoir en comprendre l'origine qui remonte au commencement de l'Univers. Pourtant les cascades cosmologiques sont un phénomène complexe faisant intervenir des interactions difficiles à modéliser (sections efficaces complexes) et le transport de particules dans un Univers en expansion (cosmologie). Face à cette complexité les expressions analytiques sont vite limitées et le passage au numérique devient inévitable. Dans le cadre de cette thèse un code de simulation Monte Carlo a donc été développé visant à reproduire aussi précisément que possible le phénomène des cascades. Ce code a été testé et validé en le confrontant aux expressions analytiques. Grâce à ce code, le rôle des différents paramètres physiques impactant le développement de la cascade a été étudié de manière systématique. Cette étude a permis de mieux comprendre la physique du phénomène. En particulier, l'impact des propriétés du milieu extragalactique (fond diffus extragalactique, champ magnétique extragalactique) sur les observables a été mis en évidence. Finalement, une seconde étude a été menée pour mesurer la contribution des cascades au fond gamma extragalactique. Des travaux récents montrent qu'une grande partie de l'émission diffuse à très haute énergie provient de sources ponctuelles non résolues (blazars en particulier). Ces sources gamma (résolues et non résolues) doivent en principe initier des cascades qui peuvent contribuer au fond diffus. En partant d'une modélisation de l'émission des blazars à différents redshifts, l'absorption et la contribution des cascades ont alors été calculées à l'aide du code Monte Carlo. Les résultats montrent que la contribution des cascades au fond gamma extragalactique pourrait violer les limites Fermi mais l'excès doit encore être confirmé. / This thesis aims at studying "cosmological electromagnetic cascades". These cascades are initiated by the absorption of very high energy gamma-rays through gamma-gamma annihilation with optical / UV background photons of the intergalactic medium. In this interaction, electron/positron pairs are produced. The newly created leptons interact with photons of the Cosmological Microwave Background producing new gamma-rays through inverse Compton scattering which can also annihilate producing a cascade of secondary particles from a single primary photon. Observationally, the development of this cascade has three effects : the observed high energy spectrum is altered, observed photons arrive with a time delay with respect to primary photons and the source appears extended. Cosmological electromagnetic cascades start to being studied in the early sixties. But it is during the 2010's with the Fermi satellite and GeV to TeV observations that the field has really started to being explored. In the fast evolving backgound of gamma-ray astronomy, understanding the cascade physics has become a crucial stake. First the observed spectrum from a distant source is altered, which directly affects the modelling of high energy sources. Secondly, the cascades develop in the extragalactic medium and are very sensitive to its composition (background light, magnetic field). This medium is hard to study because it is extremely thin. Hence the cosmological cascades are a formidable probe to access its comprehension and its origin coming from the very beginning of our Universe. Yet the cosmological cascades are a complex phenomenon which involves complicated interactions (complex cross sections) and transport of particles in an expanding Universe. Analytical expressions are rapidly limited and numerical computations are required. In this thesis a Monte Carlo simulation code has been developed aiming at reproducing the cosmological cascades. This code has been tested and validated against analytical expressions. With the simulation code, a systematic study of the parameters impacting the development of the cascade has been led. This study allows a better understanding of the cascade physics. Especially, the impact of the intergalactic medium properties (extragalactic background light, extragalactic magnetic field) on the observables has been highlighted. Finally, a second study has been done to measure the contribution of cascades to the extragalactic gamma ray background. Recent works show that a great part of the diffuse emission at very high energy is explained by unresolved sources (blazars in particular). These gamma sources (resolved and unresolved) must in principle initiate cosmological cascades which can also contribute to the extragalactic gamma ray background. Starting from a modeling of the blazars at different redshifts, absorption and contribution of the cascades have been estimated with the simulation code. The results show that the contribution of the cascades might violate the Fermi limits but the excess must be confirmed.
|
15 |
Performance of the Electromagnetic Calorimeter of AMS-02 on the International Space Station ans measurement of the positronic fraction in the 1.5 – 350 GeV energy range. / Performances du calorimètre électromagnétique d'AMS02 sur la station spatiale internationale et mesure du rapport positronique dans le domaine en énergie 1.5-350 giga électron voltBasara, Laurent 05 May 2014 (has links)
L'expérience AMS-02 est un détecteur de particules installé sur la station spatiale internationale (ISS) depuis mai 2011, date à partir de laquelle il mesure les caractéristiques des rayons cosmiques afin d'apporter des réponses aux problématiques soulevées par la physique des astroparticules depuis quelques décennies, en particulier l'étude indirecte de la matière sombre et la recherche d'antimatière. Les aspects phénoménologiques de la physique des rayons cosmiques sont revus dans la première partie. Une deuxième décrit les performances en vol des différents sous-détecteurs d'AMS-02, en particulier du calorimètre électromagnétique. Il est montré, en utilisant les particules au minimum d'ionisation (MIPs), qui constituent l'essentiel du rayonnement cosmique, que le calorimètre fonctionne comme prévu, et que l'on retrouve les mêmes performances qu'au sol. Cette étude est utilisée pour suivre au cours du temps l'évolution des performances du détecteur. Elle permet également de développer un estimateur de charge pour les noyaux utilisant le calorimètre. Une troisième et dernière partie s'attache enfin à déterminer le rapport positronique. La principale difficulté de cette mesure est d'identifier les positons en rejetant les protons grâce aux caractéristiques des gerbes dans la calorimètre. Après avoir défini des variables pertinentes pour cette séparation, nous construisons un estimateur via une analyse multivariée, en nous appuyant sur des simulations Monte-Carlo d'électrons pour les plus hautes énergies. Au-delà de 100 GeV, nous obtenons un taux de réjection de l'ordre de 10 000 pour 90% d'efficacité. Après avoir estimé la confusion de charge, cet estimateur nous permet finalement, de déterminer le rapport positronique pour les données acquises pendant les 18 premiers mois et pour des énergies allant de 1.5 à 350 GeV. / The AMS-02 experiment is a particle detector installed on the International Space Station (ISS) since May 2011, which measures the characteristics of the cosmic rays to bring answers to the problematics risen by the astroparticle physics since a few decades, in particular the study of dark matter and the search of antimatter. The phenomenological aspects of the physics of cosmic rays are reviewed in a first part. A second one describes the in-flight performances of the different subdetectors of AMS-02, in particular the electromagnetic calorimeter. It is shown, using particles at the ionizing minimum (MIPs), accounting for the main part of cosmic rays, that the calorimeter works as expected, and we find the same performances as on ground. This study is used to follow in time the evolution of the detector performances. It also allows to develop a charge estimator for the nuclei using the calorimeter. A third and final part, deals with the determination of the positronic fraction. The main difficulty of this measurement is to identify the positrons by rejecting the protons thanks to the characteristics of the showers in the calorimeter. After having defined variables relevant for this separation, we build an estimator using a multivariate analysis and Monte-Carlo simulations of electrons for the higher energies. Above 100 GeV, we obtain a rejection factor of about 10 000 at a 90% efficiency. After having estimated the charge confusion, this estimator, finally, allows us to determine the positronic ratio for the first 18 months of data and energies ranging from 1.5 to 350 GeV.
|
16 |
Sinais experimentais de matéria escura supermassiva e fortemente interagente / Experimental signal of strongly interacting supermassive dark matterLeandro José Beraldo e Silva 03 November 2010 (has links)
Há várias evidências experimentais da existência de matéria escura no universo. Apesar destas evidências, pouco se sabe sobre sua constituição, sabendo-se apenas que interage gravitacionalmente, mas não eletromagneticamente. Neste projeto, investigamos a possibilidade da matéria escura ser composta por partículas supermassivas e fortemente interagentes (Simpzillas). Para isto determinamos o sinal que deve ser deixado no telescópio IceCube por neutrinos resultantes de aniquilações de matéria escura no Sol. Após determinarmos o espectro de neutrinos no centro do Sol, simulamos sua propagação até a superfície, depois até a Terra e através da Terra até o detector. Comparamos então estes resultados com os fornecidos pelo IceCube. Esta comparação permite testar uma região do espaço de fase massa versus seção de choque previamente não-excluída por outros tipos de experiência que não telescópios de neutrinos. Como resultado, concluímos que partículas supermassivas e fortemente interagentes não podem constituir a matéria escura. / There are many experimental evidences for the existence of dark matter in the universe. Despite these evidences, there is no knowledge about its constitution other than the fact that it interacts gravitationally but not electromagnetically. In this project, we investigate the possibility that dark matter is composed of strongly interacting massive particles (Simpzillas). We determine the expected signal in the IceCube telescope from Simpzilla annihilation in the center of the Sun. We first determine the neutrino spectrum in the core of the Sun. We then simulate its propagation through both the Sun and Earth, and finally the rate of neutrinos at the detector. A comparison of these results to the ones published by the IceCube collaboration covers a large region of the yet not excluded regions of the mass versus cross-section phase space. As a result, the possibility of Simpzillas composing the dark matter is ruled out.
|
17 |
Search for dark matter with EDELWEISS-III excluding background from muon-induced neutrons / Recherche de matière noire avec l'expérience EDELWEISS-III excluant le bruit de fond neutron induit par les muonsKéfélian, Cécile 05 February 2016 (has links)
Le but de l'expérience EDELWEISS est la détection directe de matière noire sousforme de WIMPs, par l'étude de leur diffusion élastique sur les noyaux de germanium des détecteurs bolomètriques. Le plus problématique des bruits de fond provient des neutrons pouvant mimer l'interaction d'un WIMP dans un détecteur. Ces neutrons sont notamment produits par les rares muons cosmiques de haute énergie qui atteignent le laboratoire souterrain malgré les 4800 m w.e. de roche. Les muons résiduels sont détectés par un système veto de 46 modules de scintillateur plastique entourant l'expérience, qui permet de rejeter la plupart du bruit de fond associé. La détermination précise du bruit de fond neutron résiduel induit par ces muons dans EDELWEISS-III, essentielle pour l'identification des WIMPs, est le but de cette thèse. Le taux de bruit de fond dépend de la géométrie de l'expérience ainsi que des matériaux utilisés, qui ont subi d'importantes modifications depuis EDELWEISS-II. Des simulations GEANT4 du passage des muons dans la nouvelle géométrie ont été réalisées afin d'extraire le taux d'événements induits par les muons dans les bolomètres. Ce taux est en bon accord avec le taux mesuré extrait des données du Run308. En parallèle, une limite inférieure sur l'efficacité du veto muon a été extraite à partir des données bolomètres. Une nouvelle méthode basée sur l'utilisation d'une source d'AmBe a été développée afin d'extraire l'efficacité de chaque module de la simulation. À partir de ces résultats, il a été montré que le bruit de fond attendu est négligeable pour la recherche de WIMPs avec les données du Run308 et ne limitera pas la sensibilité future d'EDELWEISS-III / The aim of the EDELWEISS-III experiment is to detect the elastic scattering of WIMPs from the galactic dark matter halo on germanium bolometers. The most problematic background arises from neutrons, which can mimic a WIMP interaction in a detector. Neutrons are notably induced by high energy cosmic ray muons reaching the underground laboratory despite the 4800 m w.e. of rock overburdened. Remaining muons are tagged using an active muon-veto system of 46 plastic scintillator modules surrounding the experiment, which allows to reject most of the associated background. The goal of this thesis was to give a precise estimation of the irreducible muon-induced neutron background, needed to identify a potential WIMP signal. The expected background depends on the geometry of the experiment as well as on the used materials, both strongly modified since EDELWEISS-II. Geant4-based simulations of muons through the modified geometry were performed to derive the rate of events induced by muons in the bolometer array. This rate has been shown to be in good agreement with the measured one extracted from the Run308 data. In parallel, a lower limit on the muon-veto efficiency was derived using bolometer data only. A new method based on an AmBe source was developed to extract precisely the detection efficiency of individual modules from the simulation. From these results, it was shown that the expected background is negligible for the WIMP search analyses performed with the Run308 data and won't limit the future sensitivity of the EDELWEISS-III experiment
|
18 |
Design and Development of an Acoustic Calibrator for Deep-Sea Neutrino Telescopes and First Search for Secluded Dark Matter with ANTARESAdrián Martínez, Silvia 16 April 2015 (has links)
[EN] Neutrino astronomy is a booming field in astroparticle physics. Due to the particular characteristics of neutrinos, these particles offer great advantages as probes for the study of the far and high-energy Universe. It is extensively accepted by the scientific community that a multi-messenger approach with the combination of information provided by neutrinos, photons and charged particles (cosmic rays) is possible to obtain a more complete image of the fundamental astrophysics processes taking place in our Universe. Since neutrinos are neutral and very weak interacting particles they can reach the Earth from astrophysical sources without deflection by magnetic fields and almost without energy losses and absorption, contrarily to the rest of messengers. The other side of the coin of neutrino properties is that detection of neutrinos is very challenging and big highly instrumented detection volumes are needed. Natural media (deep sea, lakes or ice in the Antarctica) host this kind of experiments using the water (or ice) as target material where the neutrino interaction is produced. ANTARES is the first undersea neutrino telescope, located at 2475 m depth in the Mediterranean Sea. ANTARES is optimized for optical detection of the Cerenkov light induced by relativistic muons produced by high energy neutrino interactions near the detector. The charge, position and arrival time of the photons to the optical modules which compose the detector allows the muon track reconstruction, and thus, knowing the neutrino coming direction. Some information of the event energy is also derived. ANTARES is also hosting the AMADEUS experiment which is investigating the feasibility of the acoustic detection of Ultra-High Energy (UHE) neutrinos.
The framework of this thesis is the ANTARES experiment. As commonly done in the thesis developed in this experiment (and in this field), the work has been divided in two different areas. On the one hand, a part more devoted to technological aspects related to the detector and, on the other hand, a part dedicated to ANTARES data analysis.
The first part of the thesis is focused in the development of a calibrator able to reproduce the acoustic signal generated in the UHE neutrino interaction with a water nucleus which, roughly speaking, generates a highly directive bipolar acoustic pulse. Having a good calibrator is crucial to test and tune the telescope response for this kind of signals.
The second part of the thesis, the data analysis part, is centred in the analysis of the ANTARES data in order to constrain possible Dark Matter models. This work is focused on the detection of products resulting of the Dark Matter annihilation trapped in the centre of the Sun. Specifically, the Secluded Dark Matter (SDM) model has been tested by the detection of di-muons (co-linear muon pair) and/or neutrinos coming from Sun direction. Broadly speaking, this model is based on the idea of the existence of a mediator resulting of the Dark Matter annihilation which, subsequently, would decay into standard model particles as muons or neutrinos. These models have been proposed in order to explain some experimental "anomalies" observed, such as the electron-positron ratio spectrum detected in satellites, measured recently with high accuracy by AMS-II. The study of this thesis constitutes the first search of experimental evidences of this kind of models in neutrino telescopes. / [ES] La astronomía de neutrinos es un campo en auge dentro de la Física de Astropartículas. Los neutrinos ofrecen grandes ventajas como sondas para estudiar el Universo lejano y de alta energía. Es extensamente aceptado que mediante la combinación de la información que proporcionan los neutrinos junto a la obtenida mediante fotones de alta energía (rayos gamma) y partículas cargadas (rayos cósmicos) se podría obtener una imagen más completa de los procesos astrofísicos fundamentales que tienen lugar a lo largo de nuestro Universo.La razón fundamental por la que los neutrinos son tan altamente valorados como mensajeros es la baja interacción con el medio que los rodea. Al ser partículas sin carga interactúan muy débilmente con la materia, por ello pueden escaparse de la fuente donde se han producido y, al contrario de lo que ocurre con el resto de mensajeros, pueden llegar a la Tierra sin ser desviados por los campo magnéticos y sin prácticamente pérdida de energía. Esta misma razón que los hace tan valorados es a su vez la que los hace tan difíciles de detectar. Se impone la necesidad de construir detectores de grandes volúmenes, del orden del km3, altamente instrumentados. Se utilizan medios naturales (en el fondo del mar, en lagos o en enterrados en el hielo de la Antártida) aprovechando el agua (o hielo) como material diana donde se espera que interaccione el neutrino. ANTARES es el primer telescopio submarino de neutrinos construido en el fondo del mar Mediterráneo. Está optimizado para la detección óptica de la luz Cherenkov inducida por los muones relativistas producidos en la interacción de neutrinos de alta energía en los alrededores del detector. La información de la carga, posición y tiempo de llegada de los fotones a los fotomultiplicadores que componen el detector permite tanto la reconstrucción de la trayectoria del neutrino como el conocimiento de su energía. Además, ANTARES acoge el experimento AMADEUS mediante el cual se está investigando y testeando la detección acústica de neutrinos de muy alta energía que, al interaccionar en el agua, producen un pulso termo-acústico que se pretende registrar con una red de hidrófonos.
El trabajo desarrollado en esta tesis se engloba bajo el marco del experimento ANTARES. Como es común en las tesis desarrolladas en este experimento, el trabajo se ha dividido en dos áreas diferenciadas: por un lado, una parte de enfoque más tecnológico y, por otro lado, una parte analítica de datos tomados por el telescopio.
La primera parte de la tesis está centrada en el desarrollo de un calibrador capaz de reproducir la señal acústica que se emite en la interacción de un neutrino de alta energía con un núcleo de agua que, generalizando, es un pulso bipolar altamente directivo. El disponer de un buen calibrador es clave a la hora de testear la detección acústica en el telescopio y poder sintonizar y "entrenar" los los receptores para este tipo de señales.
La segunda parte de la tesis se ha centrado en el análisis de datos registrados por ANTARES con el fin de contrastar posibles modelos astrofísicos para la búsqueda de materia oscura. Este trabajo ha focalizado en la detección de los productos de la aniquilación de materia oscura atrapada en el centro del Sol. Se ha testeado el modelo de Secluded Dark Matter (SDM) a través de la detección de di-muones (pareja de muones co-lineales) y neutrinos en la dirección del Sol. A grandes rasgos, este modelo se basa en la idea de la existencia de un mediador resultado de la aniquilación de materia oscura que posteriormente decaería en partículas del modelo estándar como muones o neutrinos. Estos modelos han sido propuestos con el fin de explicar ciertas 'anomalías' experimentales observadas, tales como el espectro del flujo de positrones detectado en satélites, medido recientemente con gran precisión por AMS-II. realizado en esta tesis constituye la primera búsqueda de evidencias / [CA] L'astronomia de neutrins és un camp en auge dins la Física d'Astropartícules. Els neutrins ofereixen grans avantatges com a sondes per estudiar l'Univers llunyà i d'alta energia. Es extensament acceptat que mitjançant la combinació de la informació proporcionada pels neutrins junt a la obtinguda mitjançant fotons d'alta energia (rajos gamma) i partícules carregades (rajos còsmics) es podria obtindre una imatge més completa dels processos astrofísics fonamentals que es donen al llarg del nostre Univers. La raó fonamental per la qual els neutrins són altament valorats com a missatgers és la baixa interacció amb el medi que els envolta. Al ser partícules sense càrrega interactuen molt dèbilment amb la matèria, per això poden escapar-se de la font on s'han produït i, al contrari del que ocorre amb la resta de missatgers, poden arribar a La Terra sense desviar-se pels camps electromagnètics i sense pràcticament pèrdua d'energia. Aquesta mateixa raó que els fan tan valorats és al mateix temps la que els fa tan difícil de detectar. S'imposa la necessitat de construir detectors amb grans volums de detecció, de l'ordre del km3, altament instrumentats. S'utilitzen medis naturals (al fons de la mar, en llacs, al gel de l'Antàrtida) aprofitant l'aigua (o el gel) com a material diana on interaccionen el neutrins. ANTARES és el primer telescopi submarí de neutrins construït al fons de la mar Mediterrània. Està optimitzat per a la detecció òptica de la llum de Cherenkov induïda pels muons relativistes produïts en la interacció de neutrins d'alta energia als voltants del detector. La informació de la carrega, posició i temps d'arribada dels fotons als fotomultiplicadors que composen el detector permet tant la reconstrucció de la trajectòria del neutrí, amb gran resolució angular, com el coneixement de la seua energia. A més, ANTARES acull l'experiment AMADEUS mitjançant el qual s'està investigant i testejant la detecció acústica de neutrins de molt alta energia, que, al interaccionar a l'aigua produeixen un pols termo-acústic que es pretén registrar amb una xarxa d'hidròfons.
El treball dut a terme en esta tesi s'engloba baix el marc de l'experiment ANTARES. Com es comú en les tesis desenvolupades en aquest experiment, el treball s'ha dividit en dues àrees diferenciades: per una banda una part d'enfocament mes tecnològic i, d'altra banda, una part analítica de les dades preses pel telescopi.
La primera part de la tesi està centrada en el desenvolupament d'un calibrador capaç de reproduir la senyal acústica que es genera en la interacció d'un neutrí d'alta energia amb un nucli de l'aigua que, generalitzant, és un pols bipolar altament directiu. Disposar d'un bon calibrador es clau a l'hora de testejar la detecció acústica al telescopi i poder sintonitzar i "entrenar" els receptors a aquest tipus de senyals.
La segona part de la tesi, amb caràcter d'anàlisi de dades, s'ha centrat en l'anàlisi de les dades registrades per ANTARES amb el fi de contrastar possibles models astrofísics per a la recerca de matèria fosca. Aquest treball es centra en la detecció dels productes d'aniquilació de matèria fosca atrapada al centre del Sol. En concret, s'ha testejat el model de Secluded Dark Matter (SDM) a través de la detecció de di-muons (parell de muons co-lineals) i neutrins en la direcció del Sol. A grans trets, aquest model es basa en la idea de l'existència d'un mediador resultat de l'aniquilació de matèria fosca que posteriorment decauria en partícules del model estàndard com muons o neutrins. Aquests models han sigut proposats amb la fi d'explicar certes "anomalies" experimentals observades, tals com l'espectre del flux de positrons detectat en satèl¿lits, mesurat recentment amb gran precisió per AMS-II. L'estudi realitzat en esta tesi constitueix la primera recerca d'evidències experimentals d'aquest tipus de models en telescopis de neutrins. / Adrián Martínez, S. (2015). Design and Development of an Acoustic Calibrator for Deep-Sea Neutrino Telescopes and First Search for Secluded Dark Matter with ANTARES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48877
|
19 |
Détection directe de matière noire avec l’expérience EDELWEISS-III : étude des signaux induits par le piégeage de charges, analyse de données et caractérisation de la sensibilité des détecteurs cryogéniques aux WIMPs de basse masse / Direct detection of dark matter with the EDELWEISS-III experiment : signals induced by charge trapping, data analysis and characterization of cryogenic detector sensitivity to low-mass WIMPsArnaud, Quentin 02 November 2015 (has links)
L'expérience EDELWEISS-III est dédiée à la détection directe de matière noire sous forme de WIMPs. Ces particules massives devraient constituer plus de 80% de la masse de l'univers et être détectables via leur diffusion élastique sur un noyau de l'absorbeur d'un détecteur. Le taux d'événements WIMPs attendu étant très faible (<1/kg/an) , une méthode de double mesure chaleur/ionisation est réalisée afin de discriminer les reculs électroniques issus du fond et , des reculs nucléaires engendrés par les neutrons et WIMPs. Le travail de thèse a consisté en l'étude des signaux induits par le piégeage de charges. Un modèle analytique de son impact sur les signaux des voies ionisation et chaleur est présenté. Les prédictions du modèle, confortées par leur accord avec les données et une simulation numérique, ont donné lieu à diverses applications : amélioration des résolutions, sensibilité à la profondeur des dépôts d'énergie, caractérisation du piégeage de charges dans les cristaux. L'analyse des données du Run308 est détaillée et les résultats interprétés en terme de limite d'exclusion. Cette analyse a mis au jour la présence d'un bruit de fond neutron limitant pour la recherche de WIMPs de haute masse (>20GeV). La dernière partie est consacrée à une étude de l'optimisation des détecteurs cryogéniques aux WIMPs de basse masse. Ce travail, réalisée via un test statistique de rapport de vraisemblance profilé, a permis d'étudier l'influence des divers paramètres expérimentaux sur le potentiel d'exclusion. Les conclusions de cette analyse, conjointement aux résultats du Run308, ont mené l'expérience EDELWEISS à privilégier la recherche de WIMPs de basse masse (<20GeV) / The EDELWEISS-III experiment is dedicated to direct dark matter searches aiming at detecting WIMPS. These massive particles should account for more than 80% of the mass of the Universe and be detectable through their elastic scattering on nuclei constituting the absorber of a detector. As the expected WIMP event rate is extremely low (<1/kg/year), a double measurement heat/ionization is performed to discriminate electronic recoils originating from _ and backgrounds and nuclear recoils induced by neutrons and WIMPs. The first part of the thesis work consisted in studying the signals induced by charge carrier trapping. An analytical model of its impact on both ionization and heat signals is presented. The model predictions, through their agreement with both data and a numerical simulation, lead to various applications : improvement of the resolutions, statistical sensitivity to energy deposit depths, characterization of trapping within the crystals. The analysis of the Run308 data is detailed and its results are interpreted in terms of an exclusion limit on the WIMP-nucleon cross section (SI). This study brings to light the presence of a limiting neutron background for high mass WIMP searches (>20GeV). Finally, a study dedicated to the optimization of solid cryogenic detectors to low mass WIMP searches is presented. This study is performed on simulated data using a statistical test based on a profiled likelihood ratio that allows for statistical background subtraction and spectral shape discrimination. This study combined with results from Run308, has lead the EDELWEISS experiment to favor low mass WIMP searches (<20GeV)
|
20 |
The fall and rise of antimatter: probing leptogenesis and dark matter modelsVertongen, Gilles 25 September 2009 (has links)
Big Bang Nucleosynthesis (BBN), together with the analyses of the Cosmic Microwave Background (CMB) anisotropies, confirm what our day to day experience of life attests :antimatter is far less present than matter in the Universe. In addition, these observables also permit to evaluate that there exists about one proton for every 10^{10} photons present in the Universe. This is in contradiction with expectations coming from the standard hot big bang, where no distinction between matter and antimatter is made, and where subsequent annihilations would lead to equal matter and antimatter contents, at a level 10^{−10} smaller than the observed one. The Standard Model of fundamental interactions fails to explain this result, leading us to search for ‘Beyond the Standard Model’ physics.<p><p>Among the possible mechanism which could be responsible for the creation of such a matter asymmetry, leptogenesis is particularly attractive because it only relies on the same ingredients previously introduced to generate neutrino masses. Unfortunatelly, this elegant proposal suffers from a major difficulty :it resists to any tentative of being probed by our low energy observables. In this thesis, we tackle the problem the other way around and propose a way to falsify this mechanism. Considering the type-I leptogenesis mechanism, i.e. a mechanism based on the asymmetric decay of right-handed neutrinos, in a left-right symmetric framework, we show that the observation of a right-handed gauge boson W_R at future colliders would rule out any possibility for such mechanism to be responsible of the matter asymmetry present in our Universe.<p><p>Another intriguing question that analyses of the anisotropies of the CMB confirmed is the presence of a non-baryonic component of matter in our Universe, i.e. the dark matter. As hinted by observations of galactic rotation curves, it should copiously be present in our galactic halo, but is notoriously difficult to detect directly. We can take advantage on the fact that antimatter almost disappeared from our surroundings to detect the contamination of cosmic rays from standard sources the annihilation products of dark matter would produce.<p><p>The second subject tackled in this work is the study of the imprints the Inert Doublet Modem (IDM) could leave in (charged) cosmic rays, namely positrons, antprotons and antideuterons. This model, first proposed to allow the Bout-Englert-Higgs particle to evade the Electroweak Precision Test (EWPT) measurements, introduces an additional scalar doublet which is inert in the sense that it does not couple directly to fermions. This latter property brings an additional virtue to this additional doublet :since it interacts weakly with particles, it can play the role of dark matter. This study will be done in the light of the data recently released by the PAMELA, ATIC and Fermi-GLAST collaborations, which reported e^± excesses in two different energy ranges. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0521 seconds