Spelling suggestions: "subject:"astrophysics,""
71 |
Recherche de sources ténues ou transitoires dans les régions centrales de la Galaxie avec H.E.S.S. Application à l'étude de la région du vestige de supernova W49B.Brun, François 26 September 2011 (has links) (PDF)
L'expérience H.E.S.S. (High Energy Stereoscopic System) est un réseau de quatre télescopes dédié à l'astronomie gamma de très haute énergie et situé en Namibie. Ces télescopes utilisent la technique de l'imagerie Cherenkov atmosphérique en mode stéréoscopique pour détecter des rayons gamma entre 100 GeV et quelques dizaines de TeV. Les caméras de H.E.S.S., dotées de 960 photomultiplicateurs et d'une électronique rapide, nécessitent un étalonnage précis de la réponse de l'instrument au signal généré par les gerbes. Un couplage capacitif parasite entre les photomultiplicateurs et le système d'acquisition a été révélé et corrigé au cours de cette thèse, résultant en un étalonnage de meilleure qualité. H.E.S.S. bénéficie d'une situation géographique optimale pour l'observation des régions centrales de la Galaxie. Le relevé du plan Galactique a ainsi été un des objectifs principaux de H.E.S.S. dès le début des prises de données en 2004. Cette thèse présente la recherche de sources dans les régions centrales de la Galaxie en utilisant les méthodes d'analyse par modèle semi-analytique les plus sensibles disponibles actuellement. Une recherche de sources transitoires a également été effectuée. Les méthodes utilisées, caractérisées en détail au moyen de simulations, s'appuient sur les intervalles temporels entre les événements et n'ont pas révélées de sources significativement variables. La détection d'émission gamma de très haute énergie en direction de la région W49 et du vestige de supernova W49B en particulier a été mise en évidence durant cette thèse. L'étude de cette région et les implications de ce résultats sont présentées en détails dans ce manuscrit.
|
72 |
Variabilité des blazars détectés par le télescope spatial Fermi-LAT Etude de 3C 454.3 et développement d'une méthode de génération de courbes de lumière optimisées.Escande, L. 19 September 2012 (has links) (PDF)
Dédié à l'étude du ciel en rayons gamma, le satellite Fermi comporte à son bord le Large Area Telescope (LAT), sensible au rayonnement gamma de 20 MeV à 300 GeV. Les données recueillies par le LAT depuis son lancement en 2008 ont permis de multiplier par 10 le nombre de noyaux actifs de galaxie (NAG) détectés dans le domaine du GeV. Les rayons gamma observés dans les NAGs proviennent de processus énergétiques faisant intervenir des particules chargées de très haute énergie. Ces particules sont confinées dans un jet de plasma magnétisé qui prend sa source dans une région proche du trou noir supermassif habitant la zone centrale de la galaxie hôte. Ce jet s'éloigne à des vitesses aussi élevées que 0.9999c, formant dans de nombreux cas des lobes radio sur des échelles du kiloparsec voire du mégaparsec. Les NAGs dont le jet fait un angle faible avec la ligne de visée sont appelés blazars. La combinaison de cette très faible inclinaison du jet par rapport à la ligne de visée et de vitesses d'éjection relativistes donne lieu à des effets relativistes : mouvements apparents superluminiques, amplification de la luminosité et modification des échelles de temps. Les blazars sont caractérisés par une extrême variabilité à toutes les longueurs d'onde, sur des échelles de temps allant de quelques minutes à plusieurs mois. Une étude temporelle et spectrale du plus brillant d'entre ceux détectés par le LAT, 3C 454.3, a été réalisée afin de contraindre les modèles d'émission. Une nouvelle méthode de génération de courbes de lumière à échantillonnage adaptatif est également proposée dans cette thèse. Celle-ci permet d'extraire le maximum d'information des données du LAT quel que soit l'état de flux de la source.
|
73 |
Etude des sources X faibles des amas globulaires de la galaxie avec XMM-NewtonGendre, Bruce 07 January 2004 (has links) (PDF)
Les amas globulaires contiennent deux classes de sources X se différenciant par leur luminosité. Tout d'abord, les sources X brillantes (Lx>10^36 ergs/s), qui sont des binaires X de faible masse identiques à celles contenues dans le disque galactique. La seconde classe regroupe les objets de luminosité X faible (LX<10^34.5 ergs/s). Elle est composée d‟objets de natures diverses, principalement des systèmes binaires où l'accrétion de matière sur l'un des deux composants (une étoile à neutrons, une naine blanche) est responsable de l'émission X observée. Déterminer la population de sources X des amas globulaires permet donc d'étudier les mécanismes de formation des systèmes binaires, lesquels jouent un rôle fondamental dans l'évolution des amas globulaires en assurant leur équilibre dynamique. Cette thèse est centrée sur l'étude des populations X de 4 amas globulaires observés avec les satellites XMM-Newton ou Chandra : Omega Cen, M13, M22 et NGC 6366. Notre échantillon nous a permis d‟étudier les populations de sources X faibles et de tester les scénarii de formation des binaires en fonction de divers paramètres comme la masse, la taille et la densité stellaire de l‟amas. Nous avons associé des sources X faibles à chaque amas (respectivement 30, 5, 2 et 1). Ces sources se trouvent dans le coeur des amas. Nous avons également détecté un excès significatif de sources dans les régions externes d‟Omega Cen. Nous avons enfin découvert une binaire X de faible masse avec une étoile à neutrons dans M13 (sa contrepartie a été recherchée dans les données du télescope spatial Hubble). Nous montrons que le nombre de binaires X de faible masse avec une étoile à neutrons contenues dans un amas est corrélé avec le taux de collision stellaire. Ceci pourrait indiquer que ces binaires sont formées par la capture gravitationnelle par une étoile à neutrons d‟un autre astre dans le coeur des amas. Nous avons également étudié les mécanismes de formation des autres catégories de binaires.
|
74 |
Search for Astrophysical Tau-Neutrinos in Six Years of High-Energy Starting Events in the IceCube DetectorUsner, Marcel 02 October 2018 (has links)
Astrophysikalische Neutrinos können in der Wechselwirkung kosmischer Strahlungsteilchen mit Materie oder Photonen nahe derer Quellen entstehen. Die auf der Erde erwartete Flavor-Zusammensetzung kann mögliche Neutrino Produktionsmechanismen einschränken. Tau-Neutrinos sind aufgrund von Flavor-Oszillationen über kosmische Distanzen zu erwarten. Das IceCube Neutrino Observatorium hat astrophysikalische Neutrinos bei Energien zwischen ~60 TeV und ~10 PeV entdeckt. Die gemessene Flavor-Zusammensetzung ist kompatibel mit ~1:1:1, wie vom Pion Produktionsszenario erwartet wird. Die Elektron- und Tau-Neutrino Anteile sind experimentell jedoch weitgehend unbestimmt. Das Ziel der in dieser Dissertation präsentierten Arbeit ist die erste Identifikation eines Tau-Neutrinos in IceCube. Die Suche basiert auf der “Doppel-Kaskaden” Ereignistopologie, die durch zwei aufeinanderfolgende Teilchenschauer aufgrund der Tau-Neutrino Wechselwirkung bzw. des Tau-Zerfalls beschrieben ist. Tau-Neutrinos werden durch die Rekonstruktion dieser Ereignistopologie identifiziert. Der Abstand zwischen beiden Kaskaden entspricht der Tau-Zerfallslänge. Tau-Neutrinos werden oberhalb einer deponierten Energie von ~200 TeV mit einer Effizienz von ~30-50% bei einer Untergrundkontamination von ~5-25% identifiziert. Die Tau-Zerfallslänge wird oberhalb der Auflösungsgrenze von ~10 m auf ~2 m genau bestimmt. In Abhängigkeit des angenommenen Neutrino-Energiespektrums werden ~1-3 identifizierbare Tau-Neutrinos und ~1 Untergrundereignis erwartet. Kein Doppel-Kaskaden Ereignis wird in sechs Jahren experimenteller Daten beobachtet. Der astrophysikalische Tau-Neutrino Fluss wird durch ein oberes Limit von 2.68x10^{-18}(E/100 TeV)^{-2.97} GeV^{-1} cm^{-2} sr^{-1} s^{-1} mit einem Konfidenzniveau von 90% beschränkt. Die gemessene Flavor-Zusammensetzung ~0.51:0.49:0 ist mit dem Pion Produktionsszenario kompatibel. Die Ergebnisse beinhalten die bislang sensitivste Suche nach hochenergetischen Tau-Neutrinos in IceCube. / Astrophysical neutrinos may be produced in interactions of cosmic rays with ambient matter or photons near their sources. The observable flavor composition on Earth can constrain possible production scenarios. The appearance of tau-neutrinos due to neutrino oscillations over cosmic baselines is a clear astrophysical signature. A diffuse flux of astrophysical neutrinos between ~60 TeV to ~10 PeV energy was discovered with the IceCube Neutrino Observatory. The observed flavor composition is compatible with ~1:1:1 expected from pion production and decay at the sources, although the experimental constraints on the electron- and tau-neutrino fractions are weak. The work presented in this thesis aims to identify a tau-neutrino interaction in IceCube for the first time. The search is based on the “double cascade” event topology, which is unique to the tau-flavor and characterized by two consecutive particle showers from the charged-current interaction of a tau-neutrino with a nucleus in the ice and the subsequent decay of the tau-lepton. Tau-neutrinos are identified by reconstructing this event topology, for which the distance between both cascades is an estimator of the tau decay length. Above ~200 TeV deposited energy, the identification efficiency is between ~30-50% and the background contamination ~5-25%. The tau decay length is resolved to ~2 m above the experimental resolution limit of ~10 m. This search is expected to yield ~1-3 identifiable tau-neutrino interactions and ~1 background event, depending on the assumed neutrino energy spectrum. No double cascade event is observed in six years of detector data. The astrophysical tau-neutrino flux is constrained by an upper limit of 2.68x10^{-18}(E/100 TeV)^{-2.97} GeV^{-1} cm^{-2} sr^{-1} s^{-1} at 90% confidence level. The measured flavor composition of ~0.51:0.49:0 is compatible with the pion production scenario. The results entail the most sensitive search for highly energetic tau-neutrinos in IceCube so far.
|
75 |
Zonal flows in accretion discs and their role in gravito-turbulenceVanon, Riccardo January 2017 (has links)
This thesis focuses on the evolution of zonal flows in self-gravitating accretion discs and their resulting effect on disc stability; it also studies the process of disc gravito-turbulence, with particular emphasis given to the way the turbulent state is able to extract energy from the background flow and sustain itself by means of a feedback. Chapters 1 and 2 provide an overview of systems involving accretion discs and a theoretical introduction to the theory of accretion discs, along with potential methods of angular momentum transport to explain the observed accretion rates. To address the issue of the gravito-turbulence self-sustenance, a compressible non-linear spectral code (dubbed CASPER) was developed from scratch in C; its equations and specifications are laid out in Chapter 3. In Chapter 4 an ideal (no viscosities or cooling) linear stability analysis to non-axisymmetric perturbations is carried out when a zonal flow is present in the flow. This yields two instabilities: a Kelvin-Helmholtz instability (active only if the zonal flow wavelength is sufficiently small) and one driven by self-gravity. A stability analysis of the zonal flow itself is carried out in Chapter 5 by means of an axisymmetric linear analysis, using non-ideal conditions. This considers instability due to both density wave modes (which give rise to overstability) and slow modes (which result in thermal or viscous instability) and, thanks a different perturbation wavelength regime, represents an extension to the classical theory of thermal and viscous instabilities. The slow mode instability is found to be aided by high Prandtl numbers and adiabatic index γ values, while quenched by fast cooling. The overstability is likewise stabilised by fast cooling, and occurs in a non-self-gravitational regime only if γ ≲ 1.305. Lastly, Chapter 6 illustrates the results of the non-linear simulations carried out using the CASPER code. Here the system settles into a state of gravito-turbulence, which appears to be linked to a spontaneously-developing zonal flow. Results show that this zonal flow is driven by the slow mode instability discussed in Chapter 5, and that the presence of zonal flows triggers a non-axisymmetric instability, as seen in Chapter 4. The role of the latter is to constrain the zonal flow amplitude, with the resulting zonal flow disruption providing a generation of shearing waves which permits the self-sustenance of the turbulent state.
|
76 |
Origin of Instability and Plausible Turbulence in Astrophysical Accretion Disks and Rayleigh-stable FlowsNath, Sujit Kumar January 2016 (has links) (PDF)
Accretion disks are ubiquitous in astrophysics. They are found in active galactic nuclei, around newly formed stars, around compact stellar objects, like black holes, neutron stars etc. When the ambient matter with sufficient initial angular momentum falls towards a central massive object, forming a disk shaped astrophysical structure, it is called an accretion disk. There are both ionized and neutral disks depending on their temperatures. Generally, in accretion disks,
Gravitational force is balanced by the centrifugal force (due to the presence of angular momentum of the matter) and the forces due to gas pressure, radiation pressure and advection.
Now, the matter to be accreted needs to lose angular momentum. For most of the accretion disks, the mass of the central object is much higher than the mass of the disk, giving rise to a dynamics governed by a central force. Therefore we can neglect the effect of self-gravity of the disk. Balancing the Newtonian gravitational force and centrifugal force leads to a Keplerian rotation profile of the accreting matter with the angular velocity ∼ r−3/2, where r is the distance
from the central object. The Keplerian disk model is extremely useful to explain several flow classes (e.g. emission of soft X-ray in disks around stellar mass black holes). Due to the presence of differential rotation and hence shear viscosity, the matter can slowly lose its angular momentum and falls towards the central object. In this way, the accreting matter in the disk releases its gravitational potential energy and gives rise to luminosity that we observe. However, the molecular viscosity originated from the microscopic physics (due to the collisions between
molecules) of the disk matter is not sufficient to explain the observed luminosity or accretion rate. For example, it can be shown that the temperature arisen from the dissipation of energy due to molecular viscosity (which is around 50000K for optical depth τ = 100) is much less than the temperature observed in these systems (around 107K). In my thesis, I have addressed the famous problem of infall of matter in astrophysical accretion disks. In general, the emphasis is given on the flows whose angular velocity decreases but specific angular momentum increases with
increasing radial coordinate. Such flows, which are extensively seen in astrophysics, are Rayleigh-stable, but must be turbulent in order to explain observed data (observed temperature, as described above). Since the molecular viscosity is negligible in these systems, for a very large astrophysical length scale, Shakura and Sunyaev argued for turbulent viscosity for energy dissipation and hence to explain the infall of matter towards the central object. This idea is particularly attractive because of its high Reynolds number (Re ∼ 1014). However, the Keplerian
disks, which are relevant to many astrophysical applications, are remarkably Rayleigh stable. Therefore, linear perturbation apparently cannot induce the onset of turbulence, and consequently cannot provide enough viscosity to transport matter inwards. The primary theme of my thesis is, how these accretion disks can be made turbulent in the first place to give rise to turbulent viscosity. With the application of Magnetorotational Instability (MRI) to Keplerian
disks, Balbus and Hawley showed that initial seed, weak magnetic fields can lead to the velocity and magnetic field perturbations growing exponentially. Within a few rotation times, such exponential growth could reveal the onset of turbulence. Since then, MRI has been a widely accepted mechanism to explain origin of instability and hence transport of matter in accretion disks. Note that for flows having strong magnetic fields, where the magnetic field is tightly coupled with the flow, MRI is not expected to work. Hence, it is very clear that the MRI is bounded in a small regime of parameter values when the field is also weak. It has been well established by several works that transient growth (TG) can reveal nonlinearity and transition to turbulence at a sub-critical Re. Such a sub-critical transition to turbulence was invoked to explain colder, purely hydrodynamic accretion flows, e.g. quiescent cataclysmic variables, proto-planetary and star-forming disks, the outer region of the disks in active galactic nuclei etc. Baroclinic instability is another plausible source for vigorous turbulence in colder accretion disks. Note that while hotter flows are expected to be ionized enough to produce weak magnetic fields therein and subsequent MRI, colder flows may remain to be practically neutral in charge and hence any instability and turbulence therein must be hydrodynamic. However, in the absence of magnetic effects, the Coriolis force does not allow any significant TG in accretion disks in
three dimensions, independent of Re, while in pure two dimensions, TG could be large at large Re. However, a pure two-dimensional flow is a very idealistic case. Nevertheless, in the presence of magnetic field, even in three dimensions, TG could be very large (Coriolis effects could not suppress the growth). Hence, in a real three-dimensional flow, it is very important to explore magnetic TG. However, as mentioned above, the charge neutral Rayleigh-stable astrophysical
flows have hardly any magnetic field (e.g. protoplanetary disks, quiescent cataclysmic variables etc.). Also, the hydrodynamic Rayleigh-stable Taylor-Couette flows and plane Couette flows in the laboratory experiments are seen to be turbulent without the presence of any magnetic field, while they are shown to be stable in linear stability analysis. It is a century old unsolved problem to explain hydrodynamically, the linear instability of Couette flows and other Rayleigh-stable
Flows, which are observed to be turbulent, starting from laboratory experiments to astrophysical observations. Therefore, as in one hand, the hydrodynamic instability of the astrophysical accretion flows and laboratory shear flows (e.g. Rayleighstable Taylor-Couette flow, plane Couette flow etc.) has to be understood, on the other hand, the magnetohydrodynamic (MHD) instability of the hotter flows has also to be investigated to understand the nature of MHD instability clearly, whether it arises due to MRI or TG. I have investigated the effect of stochastic noise (which is generated by the shearing motion of the disk layers) on the hydrodynamics and magnetohydrodynamics of accretion disks and explain how stochastic noise can make accretion
Disks turbulent. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbations, and hence large energy dissipations of perturbation with time, which presumably generates instability and turbulence.
I have also given in my thesis, a plausible resolution of the hydrodynamic turbulence problem of the accretion flows and laboratory shear flows (as discussed above) from pure hydrodynamics, invoking the idea of Brownian motion of particles. I have shown that in any shear flow, very likely, the stochastic noise is generated due to thermal fluctuations. Therefore, the shear flows must be studied including the effect of stochastically driving force and hence the governing
equations should not be deterministic. Incorporating the effects of noise in the study of the above mentioned shear flows, I have shown in my thesis that hydrodynamic Rayleigh-stable flows and plane Couette flows can be linearly unstable. I have also investigated the importance of transient growth over magnetorotational instability (MRI) to produce turbulence in accretion disks. Balbus and Hawley asserted that the MRI is the fastest weak field instability in accretion
disks. However, they used only the plane wave perturbations to study the instability problem. I have shown that for the flows with high Reynolds number, which are indeed the case for astrophysical accretion disks, transient growth can make the system nonlinear much faster than MRI and can be a plausible primary source of turbulence, using the shearing mode perturbations.
Therefore, this thesis provides a plausible resolution of hydrodynamic turbulence observed in astrophysical accretion disks and some laboratory shear flows, such as, Rayleigh-stable Taylor-Couette flows and plane Couette flows. Moreover, this thesis also provides a clear understanding of MHD turbulence for astrophysical accretion disks.
|
77 |
A Close Look at the Transient Sky in a Neighbouring GalaxyTikare, Kiran January 2020 (has links)
Study of the time variable sources and phenomena in Astrophysics provides us with important insights into the stellar evolution, galactic evolution, stellar population studies and cosmological studies such as number density of dark massive objects. Study of these sources and phenomena forms the basis of Time Domain surveys, where the telescopes while scanning the sky regularly for a period of time provides us with positional and temporal data of various Astrophysical sources and phenomena happening in the Universe. Our vantage point within the Milky Way galaxy greatly limits studying our galaxy in its entirety. In such a scenario our nearest neighbour The Andromeda galaxy (M31) proves to be an excellent choice as its proximity and inclination allows us to resolve millions of stars using space based telescopes. Zwicky Transient Facility (ZTF) is a new optical time domain survey at Palomar Observatory, which has collected data in the direction of M31 for over 6 months using multiple filters. This Thesis involves exploitation of this rich data set. Stars in M31 are not resolved in ZTF as it is a ground based facility. This requires us to use the large public catalogue of stars observed with Hubble Space Telescope (HST): The Panchromatic Hubble Andromeda Treasury (PHAT). The PHAT catalogue provides us with stellar coordinates and observed brightness for millions of resolved stars in the direction of the M31 in multiple filters. Processing of the large volumes of data generated by the time domain surveys, requires us to develop new data processing pipelines and utilize statistical techniques for determining various statistical features of the data and using machine learning algorithms to classify the data into different categories. End result of such processing of the data is the astronomical catalogues of various astrophysical sources and phenomena and their light curves. In this thesis we have developed a data processing and analysis pipeline based on Forced Aperture Photometry Technique. Since the stars are not resolved in ZTF, we performed photometry at pixel level. Only small portion of the ZTF dataset has been analyzed and photometric light curves have been generated for few interesting sources. In our preliminary investigations we have used a Machine Learning Algorithm to classify the resulting time series data into different categories. We also performed cross comparison with data from other studies in the region of the Andromeda galaxy.
|
78 |
Ultra-high-energy cosmic-ray nuclei and neutrinos in models of gamma-ray bursts and extragalactic propagationHeinze, Jonas 08 June 2020 (has links)
Utrahochenergetische kosmische Strahlung (ultra-high-energy cosmic rays -- UHECR) besteht aus ionisierten Atomkernen mit den höchsten Teilchenergien, die je gemessen wurden.
Zwar wurden die Quellen von UHECRs noch nicht eindeutig identifiziert, doch gibt es deutliche Anzeichen, dass sie extragalaktisch sind.
Um die Beobachtungen zu interpretieren, wird ein Modell der Wechselwirkungen mit Photofeldern sowohl in der Quelle als auch während der extragalaktischen Propagation benötigt.
Bei diesen Wechselwirkungen werden sekundäre Neutrinos erzeugt.
Diese Dissertation behandelt Modelle der Quellen von UHECRs und die damit verbundene Produktion von Neutrinos sowohl in den Quellen als auch während der Propagation.
Dafür wurde ein neuer Code, PriNCe, für die Propagation von UHECRs entwickelt. Dieser Code wird in einem umfangreichen Parameterscan für ein generisches Quellenmodell angewendet, welches mit dem Spektralindex, der maximalen Rigidität, der kosmologischen Quellenverteilung und der chemischen Komposition als freie Parameter definiert ist. Dabei wird der Einfluss von verschiedenen Photodisintegrations- und Luftschauermodellen auf die erwarteten Eigenschaften der Quellen demonstriert.
Der Fluss kosmogenischer Neutrinos, der sich daraus robust vorhersagen lässt, liegt außerhalb der Reichweite aller derzeit geplanten Neutrinodetektoren.
GRBs als mögliche Quellen von UHECRs werden im Multi-Collision Internal-Shock Modell simuliert, welches die Abhängigkeit der Strahlungsprozesse von den verschiedenen Dissipationsradien im Plasmajet berücksichtigt.
Für dieses Modell wird der Effekt demonstriert, den verschiedene Annahmen über die anfängliche Verteilung des Plasmajets und das hydrodynamische Modell auf die resultierende UHECR- und Neutrinosstrahlung haben.
Für den Gammastrahlenblitz GRB170817A, welcher zusammen mit einem Gravitationswellensignal beobachtet wurde, werden Vorhersagen für den Neutrinofluss und ihre Abhängigkeit vom Beobachtungswinkel gemacht. / Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles observed in the Universe. While the astrophysical sources of UHECRs have not yet been uniquely identified, there are strong indications for an extragalactic origin.
The interpretation of the observations requires both simulations of UHECR acceleration and energy losses inside the source environment as well as interactions during extragalactic propagation. Due to their extreme energies, UHECR will interact with photons in these environments, producing a flux of secondary neutrinos.
This dissertation deals with models of UHECR sources and the accompanying neutrino production in the source environment and during extragalactic propagation.
We have developed a new, computationally efficient code, PriNCe, for the extragalactic propagation of UHECR nuclei. The PriNCe code is applied for an extensive parameter scan of a generic source model that is described by the spectral index, the maximal rigidity, the cosmological source evolution and the injected mass composition. In this scan, we demonstrate the impact of different disintegration and air-shower models on the inferred source properties. A prediction for the expected flux of cosmogenic neutrinos is also derived.
GRBs are discussed as specific UHECR source candidates in the multi-collision internal-shock model. This model takes the radiation from different radii in the GRB outflow into account. We demonstrate how different assumptions about the initial setup of the jet and the hydrodynamic collision model impact the production of UHECRs and neutrinos. Motivated by the multi-messenger observation of GRB170817A, we discuss the expected neutrino production from this GRB and its dependence on the observation angle. We show that the neutrino flux for this event is at least four orders of magnitude below the detection limit for different geometries of the plasma jet.
|
79 |
Contraindre l'équation d'état de la matière à densité supranucléaire à partir des sursauts X des étoiles à neutronsArtigue, Romain 20 November 2013 (has links) (PDF)
Cette thèse est consacrée à l'étude des oscillations périodiques détectées lors des sursauts X des étoiles à neutrons, dans des binaires X de faible masse. Ces oscillations offrent un moyen de sonder l'intérieur de ces objets, en mesurant notamment leur masse et leur rayon, pour ainsi contraindre l'équation d'état de la matière dense. J'ai développé des méthodes de détection et d'analyse de ces signaux, de leurs propriétés temporelles et leur dépendance en énergie. J'ai analysé les oscillations détectées dans tous les sursauts X de type 1 (ainsi qu'un super-sursaut) de 3 étoiles à neutrons observées avec l'instrument Rossi X-ray Timing Explorer/Proportional Counter Array . Sur les courbes de lumière des sursauts, j'ai sélectionné les segments donnant la meilleure signification statistique, pour construire un catalogue de profils moyens d'oscillations. La forme des profils varie grandement d'un sursaut à un autre, pour une même source. Un grand nombre de paramètres peuvent affecter les oscillations. J'ai élaboré un modèle de tache chaude à la surface de l'étoile en rotation rapide pour caractériser l'émission du sursaut X, dans un espace-temps relativiste. En utilisant les chaînes de Markov Monte Carlo pour explorer efficacement un espace des paramètres conséquent, les ajustements sur un échantillon de sursauts ont démontré l'applicabilité du modèle. Par contre, les contraintes obtenues sur la masse et le rayon de l'étoile sont limitées par la qualité des données de l'instrument utilisé. Enfin, des simulations révèlent que des mesures précises sur les paramètres sont possibles en augmentant la surface collectrice des détecteurs, comme le proposent les observatoires X du futur.
|
80 |
Simulation des données SWOT haute résolution et applications à l'étude de l'estuaire de l'AmazoneChristine, Lion 17 December 2012 (has links) (PDF)
La thèse se déroule dans le cadre de la préparation de la mission spatiale SWOT (Surface Water Ocean Topography). Cette mission est née d'une collaboration entre la NASA/JPL (National Aeronautics and Space Administration/Jet Propulsory Laboratory), le CNES (Centre National d'Etudes Spatiales), et l'ASC-CSA (Agence Spatiale Canadienne), son lancement est envisagé pour 2019. Il s'agit d'un interféromètre en bande Ka à visée proche nadir (0.6°- 4.1°). Elle aura pour but d'aider à mieux comprendre l'évolution des eaux de surface (variations de volume des lacs, des rivières, évaluation des zones inondables...) et la dynamique des océans à méso-échelle (tourbillons) grâce au passage d'une résolution de 10km à 1km. Afin de déterminer l'apport de la mission SWOT à l'étude de l'estuaire amazonien plusieurs outils de simulation ont été développés. Un premier outil modélisant les coefficients de rétrodiffusion radar pour trois types de surface (eau, sols nus et végétation) issue d'une étude CNES et la société Capgemini a permis de définir les conditions limites pour lesquelles l'eau ne serait plus discernable des autres milieux. Ce modèle a permis de mettre en évidence la sensibilité de la bande Ka aux paramètres de rugosité. Le phénomène de layover, mélange d'informations de plusieurs contributeurs dans un même pixel à cause du relief, sera plus présent dans les futures données SWOT que dans les radars imageurs existants. Or les fleuves ou les lacs sont généralement bordés d'arbres. Pour estimer les erreurs sur l'estimation des élévations des surfaces d'eau, j'ai développé un simulateur interférométrique incluant des modèles de rétrodiffusion radar simplifiés pour la végétation et l'eau. Cet outil m'a permis d'évaluer la sensibilité de la bande Ka à la densité de la végétation. Ainsi que de mettre en évidence la capacité de SWOT à détecter les zones d'inondations sous la canopée. Lorsque la forêt est inondée, l'estimation de hauteur des arbres est très faible par rapport aux résultats obtenus sans inondation : par exemple pour une fraction de trou de 10% (végétation dense), les élévations obtenues sont de l'ordre de 1m57 pour des arbres de 5m, au lieu de 4m50. Pour évaluer l'apport de SWOT à l'étude de l'estuaire de l'Amazone. Je me suis basé sur le simulateur mis en place par S. Biancamaria pendant sa thèse (soutenue en 2009). Les erreurs de l'instrument étaient assimilées à un bruit blanc, d'écart-type fixé à 20cm. Afin d'avoir des erreurs plus réalistes, je l'ai complété en insérant les erreurs inspirées des bilans de performance. Ce simulateur présente l'avantage de reproduire directement les élévations d'eau. Il a été utilisé dans plusieurs études, dont une assimilation au niveau du fleuve de l'Ohio par K. Andreadis. Dans le cas de mon site d'étude, il m'a permis d'évaluer la capacité de SWOT à mesurer la pente du fleuve et observer la propagation de la marée à l'intérieur du fleuve.
|
Page generated in 0.0606 seconds