• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 33
  • 29
  • 21
  • 20
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 251
  • 56
  • 40
  • 39
  • 34
  • 32
  • 31
  • 30
  • 28
  • 27
  • 24
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Analysis of Droplet Impact on a Liquid Pool

Radhika Arvind Bhopatkar (9012413) 25 June 2020 (has links)
<p>Secondary atomization is very important in applications like IC engine and aircraft engine performance, agricultural sprays, and inkjet printing to name a few. In case of IC engines and aircraft engines, a good understanding of the modes of secondary atomization and the resultant drop size can contribute to improving the fuel injection and hence the efficiency of the engine. Similarly, with the help of appropriate secondary atomization desired agro-spray quality, ink usage and print quality can be achieved which would optimize the usage of chemicals and ink respectively and avoid any harmful effects on the environment.</p> <p> </p> <p>One of the reasons for secondary atomization that occurs very often in most of the spray applications is the drop impact on a solid or liquid surface. Especially it is cardinal to understand the impact of a drop on a liquid film since even in case of impact of liquid drops on a solid surface ultimately the drops that are injected at a later time are going have a target surface as a thin liquid film on the solid base due to the accumulation of the previously injected drops. Analysis of drop impact on a liquid film with non-dimensional thickness ranging from 0.1 to 1 has been done thoroughly before (Cossali <i>et al.,</i> 2004, Vander Waal <i>et al.,</i> 2006, Moreira <i>et al.,</i> 2010), however, analysis of drop impact on a liquid film with non-dimensional thickness greater than 1 is still in a rudimentary stage. This work focuses on determining the probability density functions for the secondary drop sizes for drops produced in case of drop impact on a liquid film while varying the h/d ratio beyond 1. The experimental set-up used to study drop impact includes a droplet generator and DIH system as mentioned in, Yao <i>et al.</i> (2017). The DIH set-up includes a CW laser, spatial filter, beam expander and a collimator as adapted from Guildenbecher <i>et al.</i> (2016). The height of drop impact is varied to vary the impact <i>We</i>, by adjusting the syringe height. Three fluids- DI-Water, ethanol and glycerol are tested for examining the effect of viscosity on the resultant drop sizes. Results are plotted with respect to viscosity, impact <i>We</i> and the non-dimensional film thickness, as the fragmentation of drops is directly associated to these parameters. Results indicate that majority of the secondary droplets lie in the size range of 25 µm to 50 µm. It is also observed that the tendency of secondary atomization from crown splashing increases with the increase in <i>We</i> and decreases with increase in <i>Oh.</i></p>
132

Experimental And Theoretical Characterization of Liquid Jet and Droplet Breakup In High-Speed Flows

Dayna Obenauf (12160316) 18 April 2022 (has links)
<div>The atomization of jets and droplets undergoing breakup in high-speed flows has been experimentally measured and theoretically modeled. Systems for producing individual droplet breakup and full jet breakup were designed, and a wide range of diagnostics were developed and adapted to measure the results with reduced uncertainty.</div><div><br></div><div>A detailed methodology for investigating high-speed sprays in the Purdue Experimental Turbine Aerothermal Lab is presented. Optical diagnostic techniques were carefully selected and optimized for the test section geometries and flow features, such that images could be collected at high frequencies of 20 kHz with high resolutions. Developed image processing routines are outlined to demonstrate how backlit imaging with specialized lenses allowed for more accurate spray depth measurements in supersonic conditions, which were then used in regression modeling routines to derive empirical correlations that factored in test section geometry, flow conditions, and injector design. A Mie scattering imaging technique was used for quantitative analysis of the supersonic spray plume profile and measurement of the spray width. 20 kHz shadowgraphy provided sufficient gradients for analysis of the unsteadiness of the spray and surrounding supersonic flow at the point of injection. Droplet sizes and velocities were measured in subsonic conditions using digital in-line holography, in which recent advancements to the reconstruction algorithm were implemented to reduce out-of-plane measurement uncertainty, and phase Doppler particle analysis.</div><div><br></div><div>The breakup of a single drop undergoing multi-mode breakup was analytically characterized, with the proposal of a new breakup criterion in the Taylor analogy breakup model. Hill vortices within the drop were proposed as a new flow mechanism promoting multi-mode breakup. Product drop sizes from the ring breakup were predicted and compared with experimental results.</div>
133

Primary Breakup and Droplet Evaporation of Liquid Jets in Subsonic Crossflows

Shaw, Vincent 24 May 2022 (has links)
No description available.
134

Etude expérimentale de la formation d'un spray à partir d'un film liquide annulaire cisaillé / Experimental study of the spray formation from a sheared annular liquid film

Gosselin, Valentin Grégoire 23 January 2019 (has links)
Un moyen d'accroître l'efficacité et de réduire la pollution dans les domaines du transport et de l'énergie consiste à concevoir des injecteurs de carburant produisant une meilleure atomisation. Au cours de cette thèse, des expériences ont été effectuées sur un injecteur airblast souvent utilisé dans les turbines à gaz. Pour réaliser ces expérimentations, un dispositif modèle en configuration annulaire a été créé afin d'étudier le cisaillement d'un film d'eau soumis à un écoulement d'air interne à forte vitesse. La technique d'imagerie rapide par ombroscopie a été utilisée pour analyser le développement du film liquide (fréquence et célérité des ondes) et l'atomisation de la nappe en sortie d'injecteur (modes de rupture). La modification des paramètres d'injection (vitesse des écoulements) a révélé un lien entre la topologie du film liquide et le régime d'atomisation primaire. Finalement, à titre exploratoire, l'influence de la géométrie de l'injecteur (longueur de préfilm) sur le mode d'atomisation primaire a également été mise en évidence / One way to increase efficiency and reduce pollution in the transportation and energy domain is designing fuel injectors with better atomization. In this thesis, experiments were performed on a prefilming airblast atomizer often used in gas turbines. For this purpose, a model device with a cylindrical configuration was created to study the shearing of a film of water subjected to an internal high speed air flow. High speed shadowgraphy technique was used to analyse the development of the liquid film (frequency and wave celerity) and the atomization of the sheet at the injector outlet (breakup mode). The modification of the injection parameters (velocity of flows) revealed a link between the topology of the liquid film and the primary atomization regime. Finally,the influence of the geometry of the injector (prefilming length) about the mode of primary atomization was also highlighted with an exploratory study
135

Thermal Atomization of Impinging Drops on Superheated Superhydrophobic Surfaces

Lee, Eric 08 May 2023 (has links) (PDF)
Drop impact on a surface has an effect on nearly every industry and this impact may have adverse effects if not controlled. Superhydrophobic (SH) surfaces have been created with the extreme ability to repel water. These surfaces exist in nature but may also be fabricated using modern techniques. This thesis explores heat transfer from these SH surfaces to drops impacting them. This thesis is devoted to increasing the breadth of knowledge of thermal atomization during drop impingement on superheated SH surfaces. When a water drop impinges vertically on a horizontal superheated surface, intense atomization can occur. The atomization is caused by rapid vapor generation at the surface and the corresponding formation and collapse of vapor bubble cavities. This thesis is divided into two main works, experimental quantification of thermal atomization and analytical prediction of vapor generation. An experimental exploration, comprising chapter 3 contains experimental work done on drop impingement on nanostructured surfaces. of this thesis, presents results of experiments meant to quantify the amount of thermal atomization during drop impingement on superheated superhydrophobic surfaces. Effects of time, surface temperature, and surface geometry are investigated. Superhydrophobic surface geometries explored in this work included post, rib, and carbon nanotube (CNT) structures. Each surface is characterized by its temperature jump length. It is shown that, in general, atomization intensity decreases with increasing temperature jump length. It is also shown that atomization is completely suppressed on surfaces with nanoscale surface features and high cavity fraction (e.g. CNT structures). This work also relates the effect of temperature jump length on the maximum atomization temperature and the maximum atomization time. Both quantities show a systematic relationship with temperature jump length. The analytical portion, comprising chapter 4 of this thesis, presents an analytical model used to predict the amount vapor generated during drop impingement on superheated SH surfaces. This vapor generation is then correlated to experimental values of atomization. Atomization is caused by vapor generation so their magnitudes are thought to be proportional. Two existing analytical models for drop contact area of impinging drops are combined to predict drop spread for all impact scenarios. An analytical model for heat flux is used to find heat transfer to impinging drops and mass flow rate of vapor generated from boiling.
136

Microstructure and Mechanical Properties of Plasma Atomized Refractory Alloys / Mikrostruktur och mekaniska egenskaper hos plasma-atomiserade svårsmälta legeringar

Ciurans Oset, Marina January 2023 (has links)
Plasma centrifugal atomization is a method widely used in the production of spherical powders of metals and alloys with relatively low melting points. A novel plasma centrifugal atomization process suitable for high melting point materials (i.e. 3500 ᵒC and above) was developed by Metasphere Technology AB, currently Höganäs Sweden AB. In this process, feedstock material in the form of crushed powder with particle sizes in the range 400-1000 µm is fed into a rotating crucible and subsequently melted by the glow discharge of a plasmatron. Due to high rotational speeds, a melt film forms at the edge of the crucible and breaks into fine droplets that are ejected into the reactor chamber and solidified in a whirl of cold inert gases. Capability of the plasmatron to reach very high temperatures, combined with extremely rapid cooling of the ejected droplets, allow for the fabrication of fine powders of refractory alloys exhibiting metastable phases that cannot be obtained otherwise.  Oil drilling, ore processing and metal shaping applications, among other, require tool materials capable of withstanding harsh working conditions under heavy loads. Owing to their physical, chemical and mechanical properties, tungsten-carbon alloys are among the most suited materials for such applications. Melting followed by rapid solidification of tungsten-carbon mixtures with 3.9 wt.% C results in a biphasic structure composed of WC lamellae inserted in a W2C matrix, known as cast tungsten carbide (CTC). Due to the metastable nature of both phases present, CTC exhibits exceptional mechanical properties. CTC is mainly used as reinforcing dispersed phase in metal matrix composite hardfacing overlays, which are deposited by plasma transferred arc (PTA) welding or laser cladding onto steel tools. High-entropy alloys (HEAs) are defined as multi-component solid solutions with equimolar or near-equimolar concentration of all principal elements. Owing to their outstanding mechanical, corrosion, erosion, oxidation and radiation resistance properties compared to conventional alloys, HEAs are among the most suited materials for aerospace and nuclear applications. Several processing routes have allowed for laboratory-scale production of HEAs. Nevertheless, size and shape of bulk components that can be thus produced are largely limited. In a quest for up-scaling the processing of high-end bulk HEA components, plasma centrifugal atomization of pre-alloyed refractory HEA spherical powders suitable for additive manufacturing was envisaged. In this work, capabilities of the novel plasma centrifugal atomization for processing of refractory alloys into fine spherical powders have been evaluated based on two different material systems, namely CTC and a refractory HEA containing Ti, V, Zr, Nb, Mo, Hf, Ta, W. Challenges of local mechanical characterization of micron-sized powders have been addressed and a robust method for testing of individual particles has been developed. Mechanical properties such as hardness and fracture toughness of plasma atomized CTC powders have been extensively investigated and related to the corresponding thermal stories. Experimental results suggest significant straining of the crystal lattice in the case of as-atomized CTC, possibly due to extremely high cooling rates experienced by the solidifying particles. This has been ruled out the main reason for the outstanding mechanical properties of plasma atomized CTC compared to both spheroidized CTC and conventional cast &amp; crushed CTC. Effective stress relieve was possible upon heat treatment. Plasma atomization of the refractory HEA yielded similar results, where an extremely fine microstructure with no noticeable chemical segregation was obtained. Indentation hardness of this novel microstructure was found to be approximately 25% higher than that of similar alloys reported in literature. HEA powder thus produced was then consolidated into bulk HEAs with very simple geometries, proving that this powder can be further processed into components of more or less complexity for pre-defined applications.
137

Particle Morphology and Elemental Composition of Heavy Fuel Oil Ash at Varying Atomization Pressures

Tovar, Daniel Abraham 19 August 2013 (has links) (PDF)
Land-based turbine engines are currently used to burn heavy fuel oil (HFO), which is a lower cost fuel. HFO contains inorganic material that forms deposits on turbine blades reducing output and efficiency. Magnesium based additives are used to inhibit vanadium pentoxide deposition and reduce the corrosive nature of the gas and deposits in the hot gas path of the gas turbine. The focus of this study was to determine particle morphology and elemental composition of ash when firing HFO in an atmospheric combustor at various fuel injector atomization pressures. Prior to firing, the HFO was washed with water to remove sodium and potassium. A commercially available magnesium based additive was used to inhibit the vanadium in the HFO. Fuel was injected using an air-blast atomizer at air blast atomization gage pressures of 117, 186, and 255 kPa. Ash was collected from three locations downstream of combustion: immediately following combustion (pre-cyclone), from a cyclone separator (cyclone), and finally from a position located after the cyclone separator (post-cyclone). A Philips XL30 Scanning Electron Microscope (SEM) provided images, weight percent of elements of the ash, and element maps. Images taken from the SEM clearly show two particle types: 1) hollow spherical particles, or cenospheres, and 2) submicron agglomerated spherical particles. The cenospheres contained high carbon concentrations and were found primarily in the cyclone and probe bag filter. Element maps show that cenospheres, regardless of size, predominately contain carbon, oxygen, and sulfur with lesser amounts of sodium, magnesium, aluminum, and silicon. Particles collected downstream of the cyclone were primarily sub-micron in size and inorganic in composition. It is postulated that the cenospheres are the result of incomplete combustion of fuel oil droplets while the submicron spheres are nucleated inorganic material that initially evaporated from the liquid droplets. Particle size analysis was performed for each sample location. As the injection pressure was increased; the pre-cyclone and cyclone locations had similar number mean diameters that would decrease with increasing pressure. The diameter of the post-cyclone location did not change significantly with increasing air atomization. While increasing atomization pressure decreased the carbon content of the ash at all measurement locations, the atomization had little influence on the inorganic composition of the particles. The fine condensed phase particles and the larger cenosphere particles both produced similar compositions of inorganic material.
138

Deposition Thickness Modeling and Parameter Identification for Spray Assisted Vacuum Filtration Process in Additive Manufacturing

Mark, August 01 January 2015 (has links)
To enhance mechanical and/or electrical properties of composite materials used in additive manufacturing, nanoparticles are often time deposited to form nanocomposite layers. To customize the mechanical and/or electrical properties, the thickness of such nanocomposite layers must be precisely controlled. A thickness model of filter cakes created through a spray assisted vacuum filtration is presented in this paper, to enable the development of advanced thickness controllers. The mass transfer dynamics in the spray atomization and vacuum filtration are studied for the mass of solid particles and mass of water in differential areas, and then the thickness of a filter cake is derived. A two-loop nonlinear constrained optimization approach is used to identify the unknown parameters in the model. Experiments involving depositing carbon nanofibers in a sheet of paper are used to measure the ability of the model to mimic the filtration process.
139

Towards Scalable Nanomanufacturing: Modeling The Interaction Of Charged Droplets From Electrospray Using Gpu

Yang, Weiwei 01 January 2012 (has links)
Electrospray is an atomization method subject to intense study recently due to its monodispersity and the wide size range of droplets it can produce, from nanometers to hundreds of micrometers. This thesis focuses on the numerical and theoretical modeling of the interaction of charged droplets from the single and multiplexed electrospray. We studied two typical scenarios: large area film depositions using multiplexed electrospray and fine pattern printings assisted by linear electrostatic quadrupole focusing. Due to the high computation power requirement in the unsteady n-body problem, graphical processing unit (GPU) which delivers 10 Tera flops in computation power is used to dramatically speed up the numerical simulation both efficiently and with low cost. For large area film deposition, both the spray profile and deposition number density are studied for different arrangements of electrospray and electrodes. Multiplexed electrospray with hexagonal nozzle configuration can not give us uniform deposition though it has the highest packing density. Uniform film deposition with variation < 5% in thickness was observed with the linear nozzle configuration combined with relative motion between ES source and deposition substrate. For fine pattern printing, linear quadrupole is used to focus the droplets in the radial direction while maintaining a constant driving field at the axial direction. Simulation shows that the linear quadrupole can focus the droplets to a resolution of a few nanometers quickly when the interdroplet separation is larger than a certain value. Resolution began to deteriorate drastically when the inter-droplet separation is smaller than that value. This study will shed light on using electrospray as a scalable nanomanufacturing approach.
140

Atomization of a Liquid Water Jet in Crossflow at Varying Hot Temperatures for High-Speed Engine and Stratospheric Aerosol Injection Applications

Caetano, Luke 01 January 2022 (has links)
This paper aims to study how varying crossflow burning temperatures from 1100 C to 1800 C affect the liquid droplet breakup, size distribution, and atomization of a liquid water jet injected into a vitiated crossflow. The LJIC injection mechanism was implemented using the high-pressure axially staged combustion facility at the University of Central Florida. The measurement devices used to gather particle data from the exhaust plume were the TSI Aerodynamic Particle Sizer (APS), which measures particles between 0.523 µm and 20 µm, and the Sensirion SPS30 (SPS30), which measures particles between 0.3 µm and 10 µm. Both measurement devices were placed 3 ft away from the choked exit. Table 3 shows that the 1800 C crossflow temperature behaved as predicted by having the largest particle distribution of 67.97% and the largest particle count of 19,301 at 0.523 µm. The 1100 C crossflow produced the second-largest normalized particle count of 66.69% and raw particle count of 20,209 at 0.523 µm. This result is contrary to the original hypothesis because it shows that the relationship between temperature and particle count is non-linear and that many other factors must be at play in the atomization process, such as the droplet distribution at the nano level. The SPS30 was used to compare the particle size distributions between a 1500 C and 1800 C crossflow. Acquiring number concentration data for particles up to 10 µm in size, the 1800 C crossflow had a distribution peak at 802.76416 N/cm3, and the 1500 C crossflow had a peak of 867.28272 N/cm3. For the 0.5 µm peak, The 1800 C had a 10 µm particle size distribution peak at 674.27.76416 N/cm3, and the 1500C crossflow had a peak of 730.501 N/cm3. The decreased number concentration from 1500 C to 1800 C case grants the water particles in the 1800 C crossflow increased surface area, which allows for increased heat exposure from the vitiated crossflow [7]. Despite some nonlinear particle count results, the highest crossflow temperature of 1800 C produces the best atomization results by reducing the total particle count and having the largest collection of particles at the lowest detectable particle size of 0.523 µm.

Page generated in 0.0973 seconds