• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 328
  • 107
  • 81
  • 36
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 657
  • 200
  • 168
  • 157
  • 120
  • 111
  • 107
  • 86
  • 81
  • 67
  • 67
  • 64
  • 59
  • 58
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Instrumentation for energetic Neutral atom measurements at Mars, Venus and The Earth

Brinkfeldt, Klas January 2005 (has links)
<p>This thesis deals with the development and calibrations of sensors to measure energetic neutral atoms (ENAs) at Mars, Venus, and the Earth. ENAs are formed in charge exchange processes between energetic, singly--charged ions and a cold neutral gas. Since ENAs can travel in long straight trajectories, unaffected by electric or magnetic fields, they can be used to remotely image plasma interactions with neutral atmospheres. ENA instrument techniques have matured over the last decade and ENA images of the Earth's ring current for example, have successfully been analyzed to extract ion distributions and characterize plasma flows and currents in the inner magnetosphere.</p><p>Three different ENA sensors have been developed to image ENAs at Mars, Venus, and the Earth. Two of them, the nearly identical Neutral Particle imagers (NPIs) are on-board the Mars Express and Venus Express spacecraft as a part of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3 and 4) instruments. The third is the Neutral Atom Detector Unit, NUADU, aboard the TC-2 spacecraft of the Double Star mission. The NPI design is based on a surface reflection technique to measure low energy (~0.3-60 keV) ENAs, while the NUADU instrument is based on a simple design with large geometrical factor and solid state detectors to measure high energy ENAs (~20-300 keV).</p><p>The calibration approach of both NPI sensors were to define the detailed response, including properties such as the angular response function and efficiency of one reference sensor direction then find the relative response of the other sensor directions. Because of the simple geometry of the NUADU instrument, the calibration strategy involved simulations to find the cutoff energy, geometrical factor and angular response. The NUADU sensor head was then calibrated to find the response to particles of different mass and energy. The NPI sensor for the Mars Express mission revealed a so-called priority effect in the sensor that lowers the angular resolution at high detector bias. During the calibration of the Venus Express NPI sensor tests were made which showed that the priority effect is a result of low amplitude (noise) pulses generated in the detector system. The conclusion is that the effect is caused by capacitive couplings between different anode sectors of the sensor. The thresholds on the preamplifiers were set higher on the Venus Express NPI, which removed the priority effect.</p><p>Two of the three ENA experiments, the Double Star NUADU instrument and the Mars Express NPI sensor, have successfully measured ENAs that are briefly described in the thesis. The first ENA measurements at Mars were performed with Mars Express. Initial results from the NPI include measurements of ENAs formed in the Martian magnetosheath and solar wind ENAs penetrating to the nightside of Mars. The first results from NUADU in Earth orbit show the expected ENA emissions from a storm time ring current. Also, together with the HENA instrument on the IMAGE spacecraft, NUADU have produced the first multi-point ENA image of the ring current.</p>
492

Instrumentation for energetic Neutral atom measurements at Mars, Venus and The Earth

Brinkfeldt, Klas January 2005 (has links)
This thesis deals with the development and calibrations of sensors to measure energetic neutral atoms (ENAs) at Mars, Venus, and the Earth. ENAs are formed in charge exchange processes between energetic, singly--charged ions and a cold neutral gas. Since ENAs can travel in long straight trajectories, unaffected by electric or magnetic fields, they can be used to remotely image plasma interactions with neutral atmospheres. ENA instrument techniques have matured over the last decade and ENA images of the Earth's ring current for example, have successfully been analyzed to extract ion distributions and characterize plasma flows and currents in the inner magnetosphere. Three different ENA sensors have been developed to image ENAs at Mars, Venus, and the Earth. Two of them, the nearly identical Neutral Particle imagers (NPIs) are on-board the Mars Express and Venus Express spacecraft as a part of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3 and 4) instruments. The third is the Neutral Atom Detector Unit, NUADU, aboard the TC-2 spacecraft of the Double Star mission. The NPI design is based on a surface reflection technique to measure low energy (~0.3-60 keV) ENAs, while the NUADU instrument is based on a simple design with large geometrical factor and solid state detectors to measure high energy ENAs (~20-300 keV). The calibration approach of both NPI sensors were to define the detailed response, including properties such as the angular response function and efficiency of one reference sensor direction then find the relative response of the other sensor directions. Because of the simple geometry of the NUADU instrument, the calibration strategy involved simulations to find the cutoff energy, geometrical factor and angular response. The NUADU sensor head was then calibrated to find the response to particles of different mass and energy. The NPI sensor for the Mars Express mission revealed a so-called priority effect in the sensor that lowers the angular resolution at high detector bias. During the calibration of the Venus Express NPI sensor tests were made which showed that the priority effect is a result of low amplitude (noise) pulses generated in the detector system. The conclusion is that the effect is caused by capacitive couplings between different anode sectors of the sensor. The thresholds on the preamplifiers were set higher on the Venus Express NPI, which removed the priority effect. Two of the three ENA experiments, the Double Star NUADU instrument and the Mars Express NPI sensor, have successfully measured ENAs that are briefly described in the thesis. The first ENA measurements at Mars were performed with Mars Express. Initial results from the NPI include measurements of ENAs formed in the Martian magnetosheath and solar wind ENAs penetrating to the nightside of Mars. The first results from NUADU in Earth orbit show the expected ENA emissions from a storm time ring current. Also, together with the HENA instrument on the IMAGE spacecraft, NUADU have produced the first multi-point ENA image of the ring current.
493

Om dödens betydelse eller icke-betydelse : – En läsning av epikurismens förhållande till döden, utifrån Lucretius Om tingens natur / About Deaths being or not being : - a reading of Lucretius De rerum natura

Tollstedt, Mia January 2008 (has links)
Uppsatsen tar upp frågan om döden inom den epikureiska filosofin. Det visar sig att frågan kan delas upp i flera frågor. Dessa delfrågor kring döden är kopplade till olika rädslor. Uppsatsen tar även upp hur frågan kring döden blir bron mellan metafysiken och etiken inom den epikureiska filosofin. Uppsatsens huvudpunkt är utredningen av Lucretius, De rerum natura. Uppsatsen följer Lucretius argumentation kring naturen, världen och universums uppbyggnad , gudarnas förehavanden och till slut döden som en icke-händelse och därför inget att frukta. För att förstå Lucretius bör man även studera Epikuros originaltexter. Frågan är om Lucretius argument tillför någonting nytt inom den epikureiska filosofin, eller om Lucretius endast omformulerar och ger nya liknelser kring det som redan står att finna i Epikuros originaltexter. Uppsatsens slutsats blir att Lucretius egentligen inte tillför någonting nytt och att Epikuros argument om döden som en icke-händelse står sig bra. / The purpose of this essay is to examine the question of death within the epicurean philosophy. The main question can be divided into part questions. These part questions are connected to different fears. The essay also discusses how the question of death becomes the bridge between metaphysics and ethics within the epicurean philosophy. The essay’s main focus is the examination of Lucretius, De rerum natura. The essay follows Lucretius argumentation about the construction of nature, the word and universe, the whereabouts of the gods and finally death as a non-event and therefore nothing to fear. To understand Lucretius one also has to study the original texts written by Epicurus. The question is if Lucretius argument adds anything new to the epicurean philosophy, or if Lucretius only rephrases and comes up with new metaphores about what already is found in the original texts by Epicurus. The essay’s conclusions are that Lucretius doesn’t add anything new, and that Epicurus original argumentation about death as a non-event is strong.
494

Emergence of Unconventional Phases in Quantum Spin Systems

Bernier, Jean-Sebastien 26 February 2009 (has links)
In this thesis, we investigate strongly correlated phenomena in quantum spin systems. In the first part of this work, we study geometrically frustrated antiferromagnets (AFMs). Generalizing the SU(2) Heisenberg Hamiltonian to Sp(N) symmetry, we obtain, in the large-N limit, the mean-field phase diagrams for the planar pyrochlore and cubic AFMs. We then use gauge theories to consider fluctuation effects about their respective mean-field configurations. We find, in addition to conventional Neel states, a plethora of novel magnetically disordered phases: two kinds of spin liquids, Z2 in 2+1D and U(1)in 3+1D, and several valence bond solids such as two and three-dimensional plaquette and columnar singlet states. We use the same approach to study the diamond lattice AFM which possesses extended classical ground state degeneracy. We demonstrate that quantum and entropic fluctuations lift this degeneracy in different ways. In the second part of the thesis, we study ultracold spinor atoms confined in optical lattices. We first demonstrate the feasibility of experimental realization of rotor models using ultracold spin-one Bose atoms in a spin-dependent and disordered optical lattice. We show that the ground state of such disordered rotor models with quadrupolar interactions can exhibit biaxial nematic ordering in the disorder-averaged sense, and suggest an imaging experiment to detect the biaxial nematicity in such systems. Finally, using variational wavefunction methods, we study the Mott phases and superfluid-insulator transition of spin-three bosons in an optical lattice with an anisotropic two dimensional optical trap. We chart out the phase diagrams for Mott states with n = 1 and n = 2 atoms per lattice site. We show that the long-range dipolar interaction stabilizes a state characterized by antiferromagnetic chains made of ferromagnetically aligned spins. We also obtain the mean-field phase boundary for the superfluid-insulator transition, and show that inside the superfluid phase and near the superfluid-insulator phase boundary, the system undergoes a first order antiferromagnetic-ferromagnetic spin ordering transition.
495

Emergence of Unconventional Phases in Quantum Spin Systems

Bernier, Jean-Sebastien 26 February 2009 (has links)
In this thesis, we investigate strongly correlated phenomena in quantum spin systems. In the first part of this work, we study geometrically frustrated antiferromagnets (AFMs). Generalizing the SU(2) Heisenberg Hamiltonian to Sp(N) symmetry, we obtain, in the large-N limit, the mean-field phase diagrams for the planar pyrochlore and cubic AFMs. We then use gauge theories to consider fluctuation effects about their respective mean-field configurations. We find, in addition to conventional Neel states, a plethora of novel magnetically disordered phases: two kinds of spin liquids, Z2 in 2+1D and U(1)in 3+1D, and several valence bond solids such as two and three-dimensional plaquette and columnar singlet states. We use the same approach to study the diamond lattice AFM which possesses extended classical ground state degeneracy. We demonstrate that quantum and entropic fluctuations lift this degeneracy in different ways. In the second part of the thesis, we study ultracold spinor atoms confined in optical lattices. We first demonstrate the feasibility of experimental realization of rotor models using ultracold spin-one Bose atoms in a spin-dependent and disordered optical lattice. We show that the ground state of such disordered rotor models with quadrupolar interactions can exhibit biaxial nematic ordering in the disorder-averaged sense, and suggest an imaging experiment to detect the biaxial nematicity in such systems. Finally, using variational wavefunction methods, we study the Mott phases and superfluid-insulator transition of spin-three bosons in an optical lattice with an anisotropic two dimensional optical trap. We chart out the phase diagrams for Mott states with n = 1 and n = 2 atoms per lattice site. We show that the long-range dipolar interaction stabilizes a state characterized by antiferromagnetic chains made of ferromagnetically aligned spins. We also obtain the mean-field phase boundary for the superfluid-insulator transition, and show that inside the superfluid phase and near the superfluid-insulator phase boundary, the system undergoes a first order antiferromagnetic-ferromagnetic spin ordering transition.
496

Collective effects in ultracold neutral plasmas

January 2012 (has links)
This thesis describes the measurements of collective effects in strongly coupled ultra-cold neutral plasmas (UNPs). It shows the implementation of experimental techniques that perturb either the density or velocity distribution of the plasma and it describes the subsequent excitation, observation and analysis of the aforementioned collective phenomena. UNPs are interesting in that they display physics of strongly coupled systems. For most plasma systems, collective effects are well described with classical hydrodynamic or kinetic descriptions. However, for strongly coupled systems, the Coulomb interaction energy between nearest neighbors exceeds the kinetic energy, and these descriptions must be modified as the plasma crosses over from a gas-like to liquid-like behavior. Strongly coupling can be found in exotic plasma systems found astrophysics, dusty plasmas, non-neutral trapped ion plasmas, intense-laser/matter interactions and inertial confinement fusion experiments. Compared to other strongly coupled plasmas, UNPs are ideal for studying collective effects in this regime since they have lower timescales, precisely controllable initial conditions and non-invasive diagnostics. Previous studies of UNPs concentrated on plasma expansion dynamics and some collective effects such as disorder induced heating, but little work had been done in relaxation or collision rates and collective modes in UNPs. This thesis presents a method for measuring collision rates by perturbing the velocity distribution of the plasma, observing plasma relaxation and measuring the relaxation rate. It also presents a new technique for observing collective modes in the plasma by perturbing the initial density of the plasma and how this results in the excitation of ion acoustic waves and a measurement of its dispersion relation. Finally, this thesis presents how this last technique can be used to create a gap in the center of the plasma and how this leads to hole propagation and plasma streaming and presents a characterization of both phenomena. The result of these experiments will be valuable for predicting the behavior of collective effects in other strongly coupled plasmas and for comparison with theories that describe them.
497

Probing and Manipulating Ultracold Fermi Superfluids

January 2012 (has links)
Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40 K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi superfluids. Although a non-magnetic impurity does not change macroscopic properties of s-wave Fermi superfluids, depending on its shape and strength, a magnetic impurity can induce single or multiple mid-gap bound states. The multiple mid-gap states could coincide with the development of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase within the superfluid. As an analog of the Scanning Tunneling Microscope, we proposed a modified radio frequency spectroscopic method to measure the focal density of states which can be employed to detect these states and other quantum phases of cold atoms. A key result of our self consistent Bogoliubov-de Gennes calculations is that a magnetic impurity can controllably induce an FFLO state at currently accessible experimental parameters.
498

Laser flash photolysis studies of halogen atom reactions of atmospheric interest

Laine, Patrick L. 24 October 2011 (has links)
The Earth's atmosphere is a large photochemical reactor consisting primarily of N2 (~78%) and O2 (~21%) with Ar and water vapor being the next most abundant constituents. All of the remaining gases in the atmosphere are referred to as 'trace gases', and they play a critical role in understanding climate change, urban air quality, ozone production and depletion, and in determining the overall 'health' of the atmosphere. These trace components are present in our atmosphere with mixing ratios, i.e., mole fractions, ranging from sub parts per trillion to several hundred parts per million. One class of trace constituents that play a critical role in atmospheric chemistry are free radicals. Free radicals are highly reactive, often initiating the oxidation of natural and anthropogenic atmospheric species, thereby often controlling the fate and lifetimes of these species. The research comprising this dissertation focuses on laboratory studies of the kinetics and mechanisms of free radical (atomic halogen) reactions that can impact the levels of important trace atmospheric species. In the studies reported herein, laser flash photolysis (LFP) was coupled with time resolved atomic resonance fluorescence (RF) spectroscopic detection of Cl or Br atoms to investigate halogen atom chemistry. The research addresses three groups of reactions: Cl atom reactions with alkyl bromides, Cl and Br-initiated oxidations of small (C2-C6) alkenes, and Cl reactions with CH3SCH3 (DMS, dimethylsulfide) and CH3SeCH3 (DMSe, dimethylselenide). The alkyl bromide reactions were experimentally unique in that we were able to deduce kinetics of the Cl atom reaction with bromoethane, n-bromopropane, and 1,2-dibromoethane by monitoring the appearance of the Br product by LFP-RF. The Br is formed via elimination that occurs essentially instantaneously following β-H abstraction by the Cl atom. All three of the bromoalkanes investigated are emitted into the atmosphere primarily from anthropogenic sources and all three have been identified by the World Meteorological Organization (WMO) as very short-lived (lifetime less than 6 months) source gases with significant ozone depletion potentials (ODPs). Additionally, the bromoalkanes mentioned above have been of interest as model compounds for larger partially halogenated organics found in the atmosphere, and they have been considered as potential replacement compounds for chlorofluorocarbons (CFCs) that have been banned as a result of the Montreal Protocol. Brominated very short-lived compounds are thought to contribute 20-25% of total stratospheric bromine. Thus, there is considerable interest in understanding the atmospheric chemistry of even the most short-lived organic bromine compounds. Temporal profiles of Br atoms provided important kinetic and mechanistic insight for the reactions over a wide range of temperature and pressure. Temperature-dependent rate coefficients are determined for the alkyl bromides of interest for the first time, and the potential importance of the Cl reaction as an atmospheric degradation pathway for each alkyl bromide is qualitatively assessed. The studies of halogen atom reactions with alkenes focused on formation of weakly-bound adducts where kinetics of adduct formation and dissociation as well as non-adduct forming channels were evaluated. The elementary steps in the Br initiated oxidation of the alkenes 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-2-butene (tetramethylethylene, TME), and 1,3-butadiene have been investigated. The experimental kinetic database for these reactions is quite sparse. The kinetic results reported herein, suggests that Br reaction with the above olefins is much faster than previously thought. Analysis of the temperature dependence of the "approach to equilibrium" kinetic data in conjunction with electronic structure calculations allows for determination of enthalpy and entropy changes associated with each addition reaction. Where possible, both forward addition and reverse dissociation channels as well as H-abstraction pathways were characterized. The enthalpy change associated with the addition reaction to give the Br−isoprene and Br−1,3-butadiene adducts has been determined for the first time and the bond dissociation enthalpy obtained for the Br−TME adduct is in reasonable agreement with the only other previously reported value. It should be noted that in the case of isoprene and 1,3-butadiene, there are multiple possible adducts that could be formed. In order to help clarify which adducts are more or less likely to be formed, we rely on electronic structure calculations (see Chapter 5) to aid in our overall understanding of the adduct forming channels. Furthermore, for the Br reactions with the three alkenes above, atomic Br kinetics have been monitored directly both in the absence and in the presence of O2 which allowed, for the first time, determination of rate coefficients for the elementary steps in the overall complex mechanism including determination of the Br−olefin + O2 rate coefficient. Also included in this group of reactions is the chlorine reaction with isoprene. In addition to the well-known fact that isoprene is emitted into the atmosphere from vegetation, a potentially significant marine source of isoprene has received considerable attention. Chlorine has long been thought to exist primarily in marine environments, however, recent findings also suggest a significant Cl production rate in the middle of the continental United States. There are numerous room temperature kinetic studies for the Cl + isoprene reaction in the literature, however, there is only one temperature dependent study reported. Current recommended 298 K rate coefficients for isoprene reactions suggest the Cl reaction is ~ 4x faster than the analogous OH reaction. If indeed this is the case, the Cl reaction could play a non-neglibible role in isoprene oxidation in atmospheric locales where Cl concentrations are relatively high. In addition, the C−Cl bond strength in Cl−C5H8 is obtained from direct measurements of the forward and reversible addition rate coefficients. Our results are compared with the literature data, and the potential importance of Cl-initiated oxidation as an atmospheric sink for isoprene is assessed. The final group of reactions investigated involves reactions of Cl with DMS and DMSe. DMS and DMSe are the most prevalent sulfur and selenium compounds emitted to the atmosphere from the oceans. The oxidation of DMS has been studied extensively due to the interest in the possible role of DMS oxidation in the formation of sulfate aerosols, however, DMSe oxidation processes have hardly been studied at all. And, DMSe oxidation products are likely to be less volatile than the analogous DMS species. Selenium is an essential nutrient for many plants and animals; however, there is a fine line between enough and excess selenium which can be toxic. Most studies suggest that atmospheric deposition is an important source of Se contamination, and it is therefore critical to evaluate the source emissions and fate of Se in the atmosphere. Since the majority of atmospheric Se exists in the form of DMSe, determination of the kinetics and oxidation mechanisms of DMSe will go a long way towards understanding the global biogeochemical cycle of Se. Both reversible addition and H-abstraction pathways have been characterized, and the first experimental determination of bond strength of the gas-phase DMS−Cl and DMSe−Cl adducts have been obtained.
499

Ireland-Claisen Rearrangement Based Strategy To Sesquiterpenes Containing Vicinal Quaternary Carbon Atoms

Vasanthalakshmi, B 03 1900 (has links)
Among Nature's creation, terpenoids are more versatile and exciting natural products. In a remarkable display of synthetic ingenuity and creativity, nature has endowed terpenes with a bewildering array of carbocyclic frameworks with unusual assemblage of rings and functionalities. This phenomenal structural diversity of terpenes makes them ideal targets for developing and testing new synthetic strategies for efficient articulation of carbocyclic frameworks. The thesis entitled “Ireland-Claisen Rearrangement Based Strategy to Sesquiterpenes Containing Vicinal Quaternary Carbon Atoms” demonstrates the utility of the Ireland ester Claisen rearrangement and RCM reactions for the synthesis of a variety of sesquiterpenes containing vicinal quaternary carbon atoms. The results are described in five different sections, viz., (a) Synthesis of herbertene-1,13-diol and α-herbertenol; (b) Total syntheses of herbertenolide, herberteneacetal, herbertene-1,14-diol and herbertene-1,15-diol; (c) First total synthesis of the spirobenzofuran isolated from Acremonium sp. HKI 0230; (d) Total synthesis of lagopodin A; and (e) Synthesis of Laurencenone C, α- and β-chamigrenes. Complete details of the experimental procedures and the spectroscopic data were provided in a different section. A brief introduction is provided wherever appropriate to keep the present work in proper perspective. The compounds are sequentially numbered (bold), references are marked sequentially as superscripts and listed in the last section of the thesis. All the spectra included in the thesis were obtained by xeroxing the original NMR spectra. To begin with a short and efficient synthesis of herbertene-1,13-diol and α-herbertenol has been achieved starting from 2-allyl-4-methylanisole. Ireland ester Claisen rearrangement of the dimethylallyl 2-arylpent-4-enoate, obtained from p-cresol in seven steps, followed by RCM reaction of the resultant diene generated 1-aryl-1,2,2-trimethylcyclopent-3-enecarbo-xylate, which on functional group transformations provided (±)-herbertene-1,13-diol and (±)-α-herbertenol. Ireland ester Claisen rearrangement of E-3-(2-methoxy-5-methylphenyl)but-2-en-1-yl 2-methylpent-4-enoate furnished a stereoisomeric mixture of the dieneesters, which on RCM reaction generated an epimeric mixture of 2-aryl-1,2-dimethylcyclopent-3-enecarboxylates. These esters were further elaborated into (±)-herbertene-1,14-diol, (±)-herbertene-1,15-diol and (±)-herberteneacetal via epi-herbertenolide and (±)-herbertenolide. First total synthesis of a spirobenzofuran isolated from Acremonium sp. HKI 0230 has been accomplished starting from 2,5-dimethoxy-4-methylphenylacetate, confirming the structure of the natural product. Ireland ester Claisen rearrangement of dimethylallyl 2-(2,5-dimethoxy-4-methylphenyl)pent-4-enoate followed by RCM reaction and demethylation furnished a lactone, cyclopentaspirobenzofuranone, which on further functional group transformations completed the first total synthesis of the spirobenzofuran. 1-(2,5-Dimethoxy-4-methylphenyl)-1,2-dimethylcyclopent-3-enecarboxylate, an intermediate in the synthesis of spirobenzofuran, has been further elaborated into 1-aryl-1,2,2-trimethylcyclopent-3-ene, which on functional group transformations transformed into (±)lagopodin A and (±)-enokipodins A and B. Efficient total syntheses of laurencenone C, α-chamigrene and β-chamigrenes have been accomplished employing an Ireland ester Claisen rearrangement and RCM reaction as key steps starting from the Diels-Alder adduct of isoprene and acrylic acid. Ireland ester Claisen rearrangement of dimethylallyl cyclohex-3-enecarboxylate generated methyl 1-(1',1'-dimethylallyl)cyclohex-3-enecarboxylate, which was further elaborated into 5,5,9-trimethyl-spiro[5.5]undeca-3,8-dien-1-ol employing an RCM reaction as the key step. The spirodienol on further functional group transformations generated (±)-laurencenone C, (±)-α-chamigrene and (±)-β-chamigrene.
500

High-precision QED calculations of the hyperfine structure in hydrogen and transition rates in multicharged ions / Hochpräzisions-QED-Berechnungen der Hyperfeinstrukturaufspaltung im Wasserstoff und von Übergangsraten in mehrfachgeladenen Ionen

Volotka, Andrey V. 21 November 2006 (has links) (PDF)
Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and two-electron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be accounted for preserving gauge invariance. One-loop QED corrections to the magnetic-dipole transition amplitude between the fine-structure levels 2p_{3/2} and 2p_{1/2} are calculated to all orders in \alpha Z. Taking into account consistently relativistic, interelectronic-interaction, and QED corrections to the magnetic-dipole transition amplitude allows for predictions of the lifetimes of the states (1s^2 2s^2 2p)^2P_{3/2} in B-like ions and (1s^2 2s 2p)^3P_2 in Be-like ions with utmost precision. The results of corresponding calculations are compared with experimental data obtained in recent measurements at the Heidelberg EBIT. Finally, for He-like ions with nonzero-spin nuclei the effect of hyperfine quenching on the lifetimes of the 2^3P_{0,2} states is investigated and again compared available experimental data.

Page generated in 0.0924 seconds