• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Arquiteturas eficientes para sensoriamento espectral e classifica??o autom?tica de modula??es usando caracter?sticas cicloestacion?rias

Lima, Arthur Diego de Lira 28 June 2014 (has links)
Made available in DSpace on 2014-12-17T14:56:19Z (GMT). No. of bitstreams: 1 ArthurDLL_DISSERT.pdf: 2517302 bytes, checksum: c3d693c770dc1c58bad5f378aba6d268 (MD5) Previous issue date: 2014-06-28 / The increasing demand for high performance wireless communication systems has shown the inefficiency of the current model of fixed allocation of the radio spectrum. In this context, cognitive radio appears as a more efficient alternative, by providing opportunistic spectrum access, with the maximum bandwidth possible. To ensure these requirements, it is necessary that the transmitter identify opportunities for transmission and the receiver recognizes the parameters defined for the communication signal. The techniques that use cyclostationary analysis can be applied to problems in either spectrum sensing and modulation classification, even in low signal-to-noise ratio (SNR) environments. However, despite the robustness, one of the main disadvantages of cyclostationarity is the high computational cost for calculating its functions. This work proposes efficient architectures for obtaining cyclostationary features to be employed in either spectrum sensing and automatic modulation classification (AMC). In the context of spectrum sensing, a parallelized algorithm for extracting cyclostationary features of communication signals is presented. The performance of this features extractor parallelization is evaluated by speedup and parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several configuration of false alarm probability, SNR levels and observation time for BPSK and QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature is validated by a modulation classification architecture based on pattern matching. The architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK, MSK and FSK modulations, considering several scenarios of observation length and SNR levels. The numerical results of performance obtained in this work show the eficiency of the proposed architectures / O aumento da demanda por sistemas de comunica??o sem fio de alto desempenho tem evidenciado a inefici?ncia do atual modelo de aloca??o fixa do espectro de r?dio. Nesse contexto, o r?dio cognitivo surge como uma alternativa mais eficiente, ao proporcionar o acesso oportunista ao espectro, com a maior largura de banda poss?vel. Para garantir esses requisitos, ? necess?rio que o transmissor identifique as oportunidades de transmiss?o e que o receptor reconhe?a os par?metros definidos para o sinal de comunica??o. As t?cnicas que utilizam a an?lise cicloestacion?ria podem ser aplicadas tanto em problemas de sensoriamento espectral, quanto na classifica??o de modula??es, mesmo em ambientes de baixa rela??o sinal-ru?do (SNR). Entretanto, apesar da robustez, uma das principais desvantagens da cicloestacionariedade est? no elevado custo computacional para o c?lculo das suas fun??es. Este trabalho prop?e arquiteturas eficientes de obten??o de caracter?sticas cicloestacion?rias para serem empregadas no sensoriamento espectral e na classifica??o autom?tica de modula??es (AMC). No contexto do sensoriamento espectral, um algoritmo paralelizado para extrair as caracter?sticas cicloestacion?rias de sinais de comunica??o ? apresentado. O desempenho da paraleliza??o desse extrator de caracter?sticas ? avaliado atrav?s das m?tricas de speedup e efici?ncia paralela. A arquitetura de sensoriamento espectral ? analisada para diversas configura??es de probabilidades de falso alarme, n?veis de SNR e tempo de observa??o das modula??es BPSK e QPSK. No contexto da AMC, o perfil-alfa reduzido ? proposto como uma assinatura cicloestacion?ria calculada para um conjunto reduzido de frequ?ncia c?clicas. Essa assinatura ? validada por meio de uma arquitetura de classifica??o baseada no casamento de padr?es. A arquitetura para AMC ? investigada para as taxas de acerto obtidas para as modula??es AM, BPSK, QPSK, MSK e FSK, considerando diversos cen?rios de tempo de observa??o e n?veis de SNR. Os resultados num?ricos de desempenho obtidos neste trabalho demonstram a efici?ncia das arquiteturas propostas
12

Automatic Modulation Classifier - A Blind Feature-Based Tool

Cutno, Patrick 29 November 2016 (has links)
No description available.

Page generated in 0.2031 seconds