• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Drivers' Visual Focus Areas on Complex Road Networks in Strategic Circumstances: An Experimental Analysis

Shah, Abhishek 14 December 2022 (has links)
No description available.
12

Jointly Ego Motion and Road Geometry Estimation for Advanced Driver Assistance Systems

Asghar, Jawaria January 2021 (has links)
For several years, there has been a remarkable increase in efforts to develop an autonomous car. Autonomous car systems combine various techniques of recognizing the environment with the help of the sensors and could drastically bring down the number of accidents on road by removing human conduct errors related to driver inattention and poor driving choices. In this research thesis, an algorithm for jointly ego-vehicle motion and road geometry estimation for Advanced Driver Assistance Systems (ADAS) is developed. The measurements are obtained from the inertial sensors, wheel speed sensors, steering wheel angle sensors, and camera. An Unscented Kalman Filter (UKF) is used for estimating the states of the non-linear system because UKF estimates the state in a simplified way without using complex computations. The proposed algorithm has been tested on a winding and straight road. The robustness and functioning of our algorithm have been demonstrated by conducting experiments involving the addition of noise to the measurements, reducing the process noise covariance matrix, and increasing the measurement noise covariance matrix and through these tests, we gained more trust in the working of our tracker. For evaluation, each estimated parameter has been compared with the reference signal which shows that the estimated signal matches the reference signal very well in both scenarios. We also compared our joint algorithm with individual ego-vehicle and road geometry algorithms. The results clearly show that better estimates are obtained from our algorithm when estimated jointly instead of estimating separately.

Page generated in 0.0881 seconds