• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 30
  • 18
  • 8
  • 8
  • 6
  • 5
  • 2
  • 1
  • Tagged with
  • 146
  • 60
  • 31
  • 24
  • 22
  • 20
  • 20
  • 19
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Demystifying the Photo-Reactivity of Azido ortho-/para- Naphthoquinones, Exploring the Effect of Bromination on Vinylnitrene Properties and the Effect of co-Crystallization on the Photodynamic Nature of these Crystals

Judkins, DeAnté January 2022 (has links)
No description available.
82

New Routes to Functional Siloxanes: Applications of the Thermal Azide-Alkyne Cycloaddition for the Silicone Chemist

Rambarran, Talena January 2016 (has links)
Silicone oils (polysiloxane) and elastomers are a class of hydrophobic polymers with an extensive range of uses. While the high hydrophobicity can be beneficial in a variety of applications, it is not universally the case. Modification strategies for both fluid and elastomeric polydimethylsiloxane (PDMS) must be employed to create silicones with the appropriate properties for a given application, including enhanced hydrophilicity. Derivatization of PDMS leads to functional silicones with unique properties and added value. Strategies have been developed to modify both fluid and elastomeric PDMS, however, they all have varying degrees of drawbacks: the use of sophisticated equipment or expensive catalysts, restrictions to certain types of solvents, cumbersome multi-step synthetic procedures and surface reversion are some of the challenges faced. There is an opportunity to develop a simple and generic method for the controlled functionalization of PDMS. The Sharpless concept of ‘Click’ chemistry was an ideal approach to solving some of these challenges. Following nature’s lead, these reactions that are modular, wide in scope, high yielding, have simple reaction conditions and generate inoffensive byproducts. Herein, a synthetic method to functionalize silicones using the thermal Huisgen 1,3-dipolar cycloaddition of azides to alkynes is described. Initial exploration focused on the creation of inherently reactive elastomers that could be modified with a model hydrophilic moiety, poly(ethylene glycol). This was extended to the creation of amphiphilic multi-functional polysiloxanes and amphiphilic networks. Furthermore, the ‘Click’ approach was used to solve challenges faced in applications where silicones find use. The method described overcomes silicone modification challenges. The cycloaddition reaction is tolerant to many reaction conditions, is orthoganol to a variety of chemical reactions, does not require the use of a catalyst, the starting functional groups and bonds formed are stable and the reaction is high yielding, positioning the Huisgen ‘click’ reaction is an exceptional synthetic tool for the silicone chemist. / Dissertation / Doctor of Philosophy (PhD) / Polydimethylsiloxane (PDMS or silicone) fluids and elastomers are materials that find use in many applications owing to the many desirable properties they possess; personal care products, electrical insulators, sealants and biomedical are examples of products containing silicone. Native PDMS is highly hydrophobic (water repellent) and certain applications require silicones that are more compatible in environments containing water. Methods have been developed to modify both fluid and elastomeric silicones; incorporation of different molecules or polymers can enhance the properties of silicone for various applications or create unique materials. However, many of these methods have certain drawbacks: the use of sophisticated equipment, expensive ingredients, or a lack of permanence. For this reason, a new method to modify fluid and elastomeric silicones has been developed. The new method is based on the concept of ‘Click’ chemistry and has overcome some of challenges associated with other modification methods.
83

Photoaffinity Labeling Via Nitrenium Ion Chemistry: The Photochemistry of 4-aminophenylazides

Voskresenska, Valentyna D. 15 March 2011 (has links)
No description available.
84

Synthesis and Characterization of (Phospine)- and (N-Heterocyclic Carbene)Gold(I) Halides, Azides, Alkynyls, Triazoles, and Dendrimers and the Synthesis and Characterization of Gold(I) Thiacrown Macrocycles

Robilotto, Thomas J. January 2011 (has links)
No description available.
85

Chemistry of the Putative Metabolite of a Model Anti-tumor Drug

Chakraborty, Mrinal 07 August 2012 (has links)
No description available.
86

Conversion of Alcohols to Alkyl Azides Using <i>O</i>-Nitrobenzenesulfonyl Azide

Kwarkoh, Angela 26 September 2013 (has links)
No description available.
87

Molecular Mass Dependent Mechanical Properties of Metal-free Click Hydrogels

Wang, Huifeng 29 May 2015 (has links)
No description available.
88

Ligand-Assisted Catalysis Using Metal SNS Complexes

Khanzadeh, Atousa 08 January 2024 (has links)
In molecular transition metal catalyst architectures, ligand design plays a crucial role in enhancing the efficiency of catalytic reactions. Selected ligands can play a bifunctional role in ligand-assisted catalysis, providing first coordination sphere basic sites and facilitating formation of multinuclear species through monomer bridging, as well as through their electronic and steric effects. This research addresses the underutilization of SNS complexes in various catalytic cycles. Our aim is to expand their activity in different cycles, unlocking untapped reactivity. Specifically, we focus on SNS ligands with soft thiolate and hard amido donors, comparing their catalytic performance in diverse coupling reactions. This comparative study provides insights into the suitability of these ligands with different transition metals, contributing to the understanding of ligand-assisted catalysis. Chapter 1 introduces these concepts and outlines the relevant catalytic reactions studied herein. To gain a deeper understanding of the chemistry involved, a comparative analysis of the reactivity differences between transition metal complexes with similar coordination structures is conducted. This investigation is crucial as it provides valuable insights into the design of suitable ligands for transition metal catalysts. Specifically, Chapters 2 and 3 of this thesis delve into a comparison of the reactivity of coordination complexes with identical metal centers and similar ligands, or even the same molecular formula, in catalysis. In the second chapter, we introduce a new cobalt (II) complex bearing an (SNS) amido ligand for the bifunctional hydroboration of carbonyls. Following an unsuccessful attempt to mono-protonate the amido donor in the bis(amido) complex Co(SᴹᵉNSᴹᵉ)₂ (2.1) treatment with 1 equivalent of 1,3-bis(1-adamantyl)imidazolium chloride (IAd•HCl) resulted in the liberation of one protonated ligand, affording CoᴵᴵCl(SᴹᵉNSᴹᵉ)(a-IAd) (2.2) with an "abnormally" coordinated IAd ligand, i.e., specifically bound through C4 instead of C2 of the imidazole ring. Compound 2.2 exhibited excellent catalytic activity in the hydroboration of aldehydes, displaying high substrate tolerance under mild reaction conditions and short reaction times. Stoichiometric reactions of 2.2 with pinacolborane (HBpin) revealed a bifunctional catalyst activation step, generating free SNS-amine, ClBpin and the active cobalt dihydride catalyst. Generation of an analogous catalyst with a normally coordinated IAd ligand showed poor reactivity in the hydroboration of aldehydes and was unable to effect ketone hydroboration. In Chapter 3, two tetranuclear copper(I) complexes bearing thiolate [Cu(SNSᴹᵉ)]₄ (3.1) and amido [Cu(SNSᴹᵉ)]₄ (3.2) SNS ligands are synthesized and their catalytic activity in a base-free azide-alkyne cycloaddition is compared. Complex 3.1 (1 mol%) demonstrated excellent reactivity for performing this 'click' reaction in water, exhibiting a broad substrate scope and enabling the production of various triazole compounds, including bioactive compound 3.16, which holds potential as an anti-cancer drug. DFT calculations suggested a proton shuttle role for the thiolate donor in conversion of the Cu-coordinated terminal alkyne to the key Cu-alkynyl intermediate. On the other hand, complex 3.2 exhibited reactivity similar to copper chloride. This observation was attributed to the basic nature of the amido ligand, which undergoes protonation by the coordinated alkyne C-H bond, with subsequent dissociation of the SNS-amine from the copper. Without a ligand to stabilize the copper in the less stable +1 oxidation state, a disproportionation reaction occurs, leading to catalyst deactivation. Chapter 4 introduces two palladium(II) thiolate complexes: PdI(κ³-SNSᴹᵉ) (4.1) exhibits catalytic activity in promoting the Heck cross-coupling reaction, while Pd(κ²-SNSᴹᵉ)₂ (4.2) affords no coupling product. In concert with triethylamine base, catalyst 4.1 efficiently produces olefin products with excellent yields, even at low catalyst loadings, and exhibits broad substrate tolerance over a 5 h reaction period. In contrast, the limited catalytic activity of 4.2 can be rationalized by proposing the formation of a Pd(N₂S₂) complex through ligand imine coupling at elevated temperatures, a reaction reported previously for Ni and Co analogs. The tetra-coordinated ligand formed through this isomerization occupies critical coordination sites around the metal, thereby preventing oxidative addition of the organohalide substrate, a key step in the Heck reaction mechanism. This work sheds light on the divergent catalytic behaviors of these two intriguing complexes. Finally, in Chapter 5 we assess what has been learned and identify relevant implications for further work.
89

Direct observation and characterisation of 3-azido-2H-azirines: postulated, but highly elusive intermediates

Weigand, Kevin, Singh, Neeraj, Hagedorn, Manfred, Banert, Klaus 29 March 2017 (has links) (PDF)
For the first time, successful synthesis of an unknown class of compounds, 3-azido-2H-azirines, which are implicated as highly reactive intermediates in the thermolysis of the corresponding 1,1-diazidoethenes, has been performed. These elusive heterocycles have been detected and characterised by low-temperature NMR and in situ IR spectroscopy. Even the parent compound, 3-azido-2H-azirine, has been observed via low-temperature photolysis of 1,1-diazidoethene, as a highly reactive species with a half-life period of only 12 min at −40 °C. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
90

Synthesen und Reaktionen neuer, funktionalisierter Azide

Weigand, Kevin 07 September 2018 (has links)
In der vorliegenden Arbeit werden drei Hauptthemen behandelt: Ein Teilgebiet stellen die Umsetzungen der 1-Azido-1-halogen-Verbindungen in nucleophilen Substitutions- und Eliminierungsreaktionen dar, die zu neuen, teils hochexplosiven Aziden führen. Durch Derivatisierung mittels 1,3-dipolarer Cycloaddition mit Cyclooctin können diese Verbindungen in ungefährlichere Triazole überführt und anschließend eindeutig mit Hilfe der NMR-Daten, hochaufgelösten Massenspektren und/oder Elementaranalysen charakterisiert werden. Des Weiteren werden im Bereich der Propargylazide zwei Themengebiete erneut aufgegriffen. Ein Teilgebiet stellt die Kupfer(I)-katalysierte 1,3-dipolare Cycloaddition dar, die anhand verschiedener Lösungsansätze zu besser löslichen Heterocyclophanen führen sollte. Ein weiterer Schwerpunkt liegt auf der intramolekularen Abfangreaktion von Triazafulvenen, die durch Cyclisierung gebildet werden und unter einem weiteren Ringschluss mit einer nucleophilen Seitenkette zu Triazolen reagieren. Dabei werden Propargylazide durch [3,3]-sigmatrope oder baseninduzierte, prototrope Umlagerung zu den Allenylaziden umgesetzt, die als Vorläufer der Triazafulvene fungieren.:Inhaltsverzeichnis Abkürzungsverzeichnis IX THEORETISCHER TEIL 1 1 Einleitung 1 1.1 Organische Azide − Geschichte, Eigenschaften, Herstellung und Folgereaktionen 1 1.2 Synthese der 1-Azido-1-halogen-Verbindungen 21 und 22 über die Alpha-Azidoalkohole 26 5 1.3 Die Geschichte der Propargylazide 18 und deren Folgereaktionen 7 1.3.1 Synthese von Heterocyclophanen 46 ausgehend von Propargylaziden 18 via 1,3-dipolarer Cycloaddition 8 1.3.2 Umlagerung der Propargylazide 18 zu den Allenylaziden 37 mit anschließender, nucleophiler Abfangreaktion zu den Triazolen 39 11 1.4 Motivation und Zielsetzung 13 2 Ergebnisse und Diskussion 15 2.1 Folgereaktionen der 1-Azido-1-halogen-Verbindungen 21 und 22 15 2.1.1 1,3-dipolare Cycloaddition mit Cyclooctin 16 2.1.2 Nucleophile Substitution 17 2.1.3 Eliminierung von Halogenwasserstoff 21 2.1.4 Herstellung und Umsetzung des 1,1-Diazidoethens (80e) 23 2.2 Herstellung neuer Heterocyclophane 46 aus Propargylaziden 18 durch eine „Ein-Topf“-Synthese 29 2.2.1 Darstellung geeigneter Vorläufersubstanzen 18 29 2.2.2 Umsetzung der Propargylazide 18 via CuAAC 32 2.3 Intramolekulare Abfangreaktionen von Triazafulvenen 38 45 2.3.1 Bildung des Allenylazids 37 über eine [3,3]-sigmatrope Umlagerung und die weitere Reaktion zum Triazol 39 45 2.3.2 Baseninduzierte, prototrope Umlagerung über die Allenylazide zu den Triazolen 61 3 Zusammenfassung 69 3.1 Ausblick 75 EXPERIMENTELLER TEIL 77 4 Verwendete Geräte und allgemeine Anmerkungen 77 5 Synthesevorschriften 79 5.1 Synthese und Folgereaktionen der 1-Azido-1-halogen-Verbindungen 79 5.1.2 Umsetzung der 1-Azido-1-halogen-Verbindungen mit TMGA 83 5.1.3 Umsetzung der 1-Azido-1-halogen-Verbindungen mit NBu4SCN 85 5.1.4 Umsetzung der 1-Azido-1-halogen-Verbindungen mit tBuOK 88 5.2 Synthese der Heterocyclophane 95 5.2.1 Synthese von 1-Butoxybut-3-in-2-ol (90b) 95 5.2.2 Synthese des 1-Butoxybut-3-in-2-yltosylats (91b) 95 5.2.3 Synthese von 3-Azido-4-butoxybut-1-in (18b) 96 5.2.4 Umsetzung von 3-Azido-4-butoxybut-1-in (18b) mit Methanol 98 5.2.5 Synthese von 3-Azido-4-phenoxybut-1-in (18c) 98 5.2.6 Umsetzung von 3-Azido-4-phenoxybut-1-in (18c) mit Methanol 100 5.2.7 Synthese von 1-Butoxy-4-trimethylsilylbut-3-in-2-ol (101) 100 5.2.8 Synthese von 1-Butoxy-4-trimethylsilylbut-3-in-2-yltosylat (102) 101 5.2.9 Synthese von 3-Azido-4-butoxy-1-trimethylsilylbut-1-in (18d) 102 5.2.10 Synthese von 4-(1-Azido-2-butoxyethyl)-1,2,3-triazol (39b) 102 5.2.11 Alkylierung von 4-(1-Azido-2-butoxyethyl)-1,2,3-triazol (39b) mit Propargylbromid 103 5.2.12 Synthese von 4-(1-Azido-2-phenoxyethyl)-1,2,3-triazol (39c) 105 5.2.13 Alkylierung von 4-(1-Azido-2-phenoxyethyl)-1,2,3-triazol (39c) mit Propargylbromid 105 5.3 Intramolekulare Abfangreaktion von Triazafulvenen 107 5.3.1 Synthese der Ethinyl-substituierten Heterocyclen 107 5.3.2 Synthese der Propargylazide als Vorläufersubstanzen 109 5.3.3 Produkte der intramolekularen Abfangreaktion 118 LITERATURVERZEICHNIS 129 6 Anhang 136 DANKSAGUNG 280 BIOGRAPHIE, VERÖFFENTLICHUNGEN, VORTRÄGE UND POSTER 282 SELBSTSTÄNDIGKEITSERKLÄRUNG 284

Page generated in 0.0447 seconds