• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Krūvius transportuojančių, stabilios amorfinės būsenos hidrazonų, azinų bei antrachinono darinių sintezė ir savybės / Synthesis and properties of charge transporting molecular glasses possessing hydrazone, azine and anthraquinone moieties

Vilionskienė, Ingrida 26 July 2005 (has links)
The aims of the work were as follows: • synthesis of branched dimers with stable amorphous state possessing tiophenylsulphide, sulphide and hydroxygroups in the linking fragment of chromophores from aromatic and heteroaromatic alde6 hyde phenylhydrazones. A thorough study of physical and optoelectrographic properties of these charge-transporting compounds; • synthesis of new crosslinkable charge transporting molecular glasses exhibiting high charge carrier mobilities, high morphological stability; • design and synthesis of new hole transporting molecular glasses and polymers (from 9-(2,3-epoxypropyl)carbazole); • investigation of the interaction of 1(2)-aminoanthraquinone and 1- chloro-2,3-epoxypropane (CEP) with the aim to use the products for the creation of hydroxygroups possessing electron-transporting materials, having stable amorphous state.
2

Etude de couplages croisés directs catalytiques décarboxylants d'acides picoliniques et cinnamiques / Study of direct catalytic decarboxylative cross croupling reaction of carboxyazine N-oxide and cinnamaic acid

Rouchet, Jean-Baptiste 29 September 2015 (has links)
La fonctionnalisation des hétéroaromatiques suscite grand intérêt tant en chimie supramoléculaire qu’en chimie pharmaceutique. Parmi les techniques les plus employées, la chimie organométallique catalysée par les métaux de transition est une méthode de choix et apporte depuis plus d’un siècle une contribution majeure notamment depuis l’avènement des couplages croisés. Les défis méthodologiques contemporains reposent en grande partie sur le concept du ‘mieux avec moins’ et visent notamment au développement de couplages croisés directs catalytiques impliquant des liaisons C-CO₂H et C−H avec le souci (i) d’éviter la préparation et/ou l’isolement d’intermédiaires organométalliques hautement réactifs souvent préparés dans des conditions drastiques et/ou sensibles à l’humidité et parfois instables, (ii) de réduire la production massive de sels; (iii) d’éviter les étapes de protection/déprotection des fonctions sensibles aux attaques nucléophiles. Ce travail de thèse s’inscrit dans ce contexte et a pour objectif le développement de nouveaux couplages croisés directs décarboxylants de type CCO₂H/C-X et C-CO₂H/C-H impliquant deux partenaires de couplages inédits, les acides carboxyaziniques N-oxydés et les acides cinnamiques α-méthoxylés, traités dans deux parties distinctes. Un premier travail a conduit au développement d’une méthodologie générale de couplage décarboxylant,catalysée au palladium (0) et assistée par l’argent (I), d’acides quinaldiques et picoliniques N-oxydés ainsi que de l’acide isoquinoline 3-carboxylique avec des halogéno(hétéro)arènes. En effet, bien que le cuivre (I) se soit révélé plus performant par calculs DFT pour conduire l’ipso-décarboxylation-métallation, seul l’argent favorise la catalyse conventionnelle coopérative Pd(0)/Ag(I) assurant la sélectivité en lieu et place de la fonction acide carboxylique. Ayant montré un large spectre de réactivité, la méthodologie tolère en particulier la présence de substituants sur le noyau azinique. Elle représente également une alternative synthétique à l’arylation directe de la liaison C−H des azines N-oxydées pour accéder aux azines 2-hétéroarylées ainsi qu’aux pyridines 2,5-disubstituées et aux isoquinoléïnes 3-arylées. Comme application, une approche modulable et flexible a été développée pour la synthèse d’une isoquinoline fonctionnalisée en position 1 et 3 connue comme agent antitumoral. Le second travail a porté sur la mise au point des premiers couplages croisés décarboxylants oxydants de type CCO₂H/C−H pallado-catalysés et assistés par le cuivre (II) d’acides cinnamiques α-méthoxylés sur une large gamme d’hétérocycles pour conduire à la formation stérécontrollée d’éthers d’enol héteroarylés en position géminale. L’introduction directe et inédite de la fonction éther vient enrichir le panel des méthodologies de fonctionnalisation des liaisons C−H des hétérocycles. Leur haut potentiel d’aménagement fonctionnel permet de diversifier consécutivement et très largement la nature de la fonctionnalisation pour accéder en particulier aux hétéroarylalkyl cétones et aux alcènes poly-fonctionnalisés. / The functionalization of heterocycles arouse an interest both in supramolecular chemistry and in pharmaceuticals. Based on the so-called concept better with less, the development of direct functionalization methodologies of heterocycles involving C–H and C–CO₂H bonds has emerged as an efficient, modern alternative and complementary process to traditional cross coupling methods, avoiding thus the use of stoichiometric organometallic reagents that are often air and moisture sensitive. In this context, the aim of this PhD work was to develop new decarboxylative cross couplings, CO₂H / C-X and CO₂H / C−H, using substituted 2-carboxyazine N-oxides and α-methoxyacrylic acids as new coupling partners.The first part of this work has been focused on the development of the versatile Pd-catalyzed and Ag-assisted decarboxylative coupling of quinaldic and picolonic acids N-oxides as well as 3-carboxyisoquinoline acids with (hetero)aryl halides. Although copper (I) appeared to be more efficient by DFT calculations to perform ipsodecarboxylation-metallation step, only silver catalysis revealed to be much more adequate to achieve the conventional decarboxylative coupling and this was then pointed out with the high regioselectivity observed at the carboxy function site. This reaction showed a large reactivity spectrum and tolerated for the first time substituents on azinic core. It is also a synthetic alternative to the direct C−H arylation on azine N-oxides for the regioselective synthesis of 2-arylated substituted pyridines and 3-arylated isoquinolines. As application, a modular and flexible approach has been developed for the synthesis of the highly functionalized 1,3-substitute disoquinoline 5, shown as an antitumor agent.In the second part, the first Pd-catalyzed and Cu-assisted decarboxylative / C-H alkenylation of heterocycleswith various α−methoxyacrylic acids was reported offering general stereocontrolled access to heteroarylated enol ethers in geminal position. The direct introduction of vinyl ether allows to expand the panel of C-H bond functionalizations methodologies of heterocycles. The high potential for subsequent post-functional adjustment of the vinyl ether moiety enable thus the synthesis of heteroarylated α,β-enolizable ketones and polysusbituted alkenes.
3

Towards reliable contacts of molecular electronic devices to gold electrodes

Cafe, Peter F January 2008 (has links)
PhD / SYNOPSIS OF THIS THESIS The aim of this thesis is to more fully understand and explain the binding mechanism of organic molecules to the Au(111) surface and to explore the conduction of such molecules. It consists of five discreet chapters connected to each other by the central theme of “The Single Molecule Device: Conductance and Binding”. There is a deliberate concentration on azine linkers, in particular those with a 1,10-phenanthroline-type bidentate configuration at each end. This linker unit is called a “molecular alligator clip” and is investigated as an alternative to the thiol linker unit more commonly used. Chapter 1 places the work in the broad context of Molecular Electronics and establishes the need for this research. In Chapter 2 the multiple break-junction technique (using a Scanning Tunnelling Microscope or similar device) was used to investigate the conductance of various molecules with azine linkers. A major finding of those experiments is that solvent interactions are a key factor in the conductance signal of particular molecules. Some solvents interfere with the molecule’s interaction with and attachment to the gold electrodes. One indicator of the degree of this interference is the extent of the enhancement or otherwise of the gold quantized conduction peak at 1.0 G0. Below 1.0 G0 a broad range for which the molecule enhances conduction indicates that solvent interactions contribute to a variety of structures which could bridge the electrodes, each with their own specific conductance value. The use of histograms with a Log10 scale for conductance proved useful for observing broad range features. vi Another factor which affects the conductance signal is the geometric alignment of the molecule (or the molecule-solvent structure) to the gold electrode, and the molecular alignment is explored in Chapters 3 for 1,10-phenanthroline (PHEN) and Chapter 4 for thiols. In Chapter 3 STM images, electrochemistry, and Density Functional Theory (DFT) are used to determine 1,10-phenanthroline (PHEN) structures on the Au(111) surface. It is established that PHEN binds in two modes, a physisorbed state and a chemisorbed state. The chemisorbed state is more stable and involves the extraction of gold from the bulk to form adatom-PHEN entities which are highly mobile on the gold surface. Surface pitting is viewed as evidential of the formation of the adatom-molecule entities. DFT calculations in this chapter were performed by Ante Bilic and Jeffery Reimers. The conclusions to Chapter 3 implicate the adatom as a binding mode of thiols to gold and this is explored in Chapter 4 by a timely review of nascent research in the field. The adatom motif is identified as the major binding structure for thiol terminated molecules to gold, using the explanation of surface pitting in Chapter 3 as major evidence and substantiated by emergent literature, both experimental and theoretical. Furthermore, the effect of this binding mode on conductance is explored and structures relevant to the break-junction experiment of Chapter 2 are identified and their conductance values compared. Finally, as a result of researching extensive reports of molecular conductance values, and having attempted the same, a simple method for predicting the conductance of single molecules is presented based upon the tunneling conductance formula.
4

Lithiumamide, -hydrazonide und -ketazide als Bausteine acyclischer, cyclischer und spirocyclischer Bor-, Phosphor- und Siliciumverbindungen sowie monomerer und dimerer Amino-imino-borene / Lithiumamide, -hydrazonides and -ketazides as components for acyclic, cyclic, and spirocyclic boron-, phosphorus, and silicon compounds and monomeric, and dimeric amino-imino-borens

Görth, Martin 22 January 2009 (has links)
No description available.
5

Towards reliable contacts of molecular electronic devices to gold electrodes

Cafe, Peter F January 2008 (has links)
PhD / SYNOPSIS OF THIS THESIS The aim of this thesis is to more fully understand and explain the binding mechanism of organic molecules to the Au(111) surface and to explore the conduction of such molecules. It consists of five discreet chapters connected to each other by the central theme of “The Single Molecule Device: Conductance and Binding”. There is a deliberate concentration on azine linkers, in particular those with a 1,10-phenanthroline-type bidentate configuration at each end. This linker unit is called a “molecular alligator clip” and is investigated as an alternative to the thiol linker unit more commonly used. Chapter 1 places the work in the broad context of Molecular Electronics and establishes the need for this research. In Chapter 2 the multiple break-junction technique (using a Scanning Tunnelling Microscope or similar device) was used to investigate the conductance of various molecules with azine linkers. A major finding of those experiments is that solvent interactions are a key factor in the conductance signal of particular molecules. Some solvents interfere with the molecule’s interaction with and attachment to the gold electrodes. One indicator of the degree of this interference is the extent of the enhancement or otherwise of the gold quantized conduction peak at 1.0 G0. Below 1.0 G0 a broad range for which the molecule enhances conduction indicates that solvent interactions contribute to a variety of structures which could bridge the electrodes, each with their own specific conductance value. The use of histograms with a Log10 scale for conductance proved useful for observing broad range features. vi Another factor which affects the conductance signal is the geometric alignment of the molecule (or the molecule-solvent structure) to the gold electrode, and the molecular alignment is explored in Chapters 3 for 1,10-phenanthroline (PHEN) and Chapter 4 for thiols. In Chapter 3 STM images, electrochemistry, and Density Functional Theory (DFT) are used to determine 1,10-phenanthroline (PHEN) structures on the Au(111) surface. It is established that PHEN binds in two modes, a physisorbed state and a chemisorbed state. The chemisorbed state is more stable and involves the extraction of gold from the bulk to form adatom-PHEN entities which are highly mobile on the gold surface. Surface pitting is viewed as evidential of the formation of the adatom-molecule entities. DFT calculations in this chapter were performed by Ante Bilic and Jeffery Reimers. The conclusions to Chapter 3 implicate the adatom as a binding mode of thiols to gold and this is explored in Chapter 4 by a timely review of nascent research in the field. The adatom motif is identified as the major binding structure for thiol terminated molecules to gold, using the explanation of surface pitting in Chapter 3 as major evidence and substantiated by emergent literature, both experimental and theoretical. Furthermore, the effect of this binding mode on conductance is explored and structures relevant to the break-junction experiment of Chapter 2 are identified and their conductance values compared. Finally, as a result of researching extensive reports of molecular conductance values, and having attempted the same, a simple method for predicting the conductance of single molecules is presented based upon the tunneling conductance formula.
6

Conversão ascendente de frequências e absorção não linear de salicilaldeido azina / Ascending frequency conversion and non-linear absorption of salicylaldehyde azine

Souza, Amadeu Bandeira de 13 March 2013 (has links)
Two-photon absorption and two-photon excitation fluorescence of salicylaldehyde azine crystals were investigated. It was observed an intense visible fiuorescence when this material was excited with a laser tuned at the near infrared region. Varying the laser intensity we identified this phenomenon as a simultaneous two-photon laser absorption process. Using open aperture Z-scan measurements we characterized this two-photon absorption phenomenon and measured the value of the two-photon absorption crosssection of this molecule to be equal to 87 GM. Our results indicate that this is a promising organic material aiming nonlinear photonics applications. / Fundação de Amparo a Pesquisa do Estado de Alagoas / Neste trabalho foram investigados os efeitos físicos de Absorção não linear de dois fótons e fluorescência assistida por absoção de dois fótons em cristais orgânicos de salicilaldeído azina. Observou-se uma intensa fluorescência na região visível do espectro, quando este material foi excitado com um laser sintonizado na região do infravermelho próximo. Variando a intensidade do laser, esse fenômeno foi identificado como um processo de absorção simultânea de dois fótons do laser. Usando a técnica de varredura Z fenda aberta, esse efeito de absorção de dois fótons foi caracterizado e a seção de choque de absorção de dois fótons medida para esta molécula foi igual a 87 GM. Esses resultados indicam que essa molécula é um material orgânico promissor para o desenvolvimento de aplicações fotônicas.

Page generated in 0.0445 seconds