• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 16
  • 9
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 38
  • 37
  • 24
  • 19
  • 18
  • 18
  • 15
  • 15
  • 14
  • 12
  • 12
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Caracterização de backfill cimentado na mina Aguilar

Zeni, Marilia Abrão January 2016 (has links)
Com a crescente diminuição de recursos minerais e o alto custo envolvido na construção da estrutura de uma mina, a recuperação máxima possível de uma jazida vem se tornando fundamental. Para isso além da escolha do método de lavra ter a necessidade de ser feito cautelosamente, é possível lançar mão de métodos adicionais de recuperação, como por exemplo, a recuperação de pilares. Essa pesquisa foi baseada na determinação da caracterização do enchimento (backfill cimentado) utilizado nas câmaras vazias que possibilita a posterior recuperação dos pilares. A caracterização do enchimento é composta da determinação da resistência simples do backfill necessária para que o enchimento cumpra com seu objetivo, desenvolvimento da classificação granulométrica ótima para os agregados e dosagem de cimento e água para alcançar a resistência proposta. A metodologia desenvolvida para obter a nova caracterização é composta de várias etapas que incluem pesquisas em campo e trabalhos em laboratório. Primeiramente, foram obtidos através de análise em campo os parâmetros de dosagem de cimento e classificação granulométrica dos agregados já utilizados na planta de fabricação do enchimento, bem como sua resistência correspondente. Em seguida definições teóricas da dosagem de cimento ideal e classificação granulométrica ótima foram realizadas com base na resistência à compressão simples que foi identificada como necessária para cumprir com as solicitações geomecânicas do maciço rochoso, então posteriormente, a nova caracterização definida teoricamente foi posta à prova através da confecção de corpos de prova de backfill, seguido de execuções de ensaios de compressão. Durante a primeira etapa da metodologia, já se pôde identificar que os agregados possuíam um alto índice de partículas tamanho argila que estavam afetando os resultados de resistência obtidos com a caracterização empregada inicialmente. A partir disso se optou por construir a curva granulométrica ótima sem essa fração. A resistência à compressão simples calculada de 2,69 MPa, foi obtida com base no planejamento de longo prazo que prevê a total recuperação dos pilares existentes na mina. Dessa maneira toda a área que será minerada foi considerada como um único bloco. Finalmente, foi identificada a dosagem de cimento sendo de 4% em peso, que juntamente com a granulometria ótima é capaz de alcançar os valores esperados de resistência. Para que o planejamento da produção da mina durante os próximos anos de vida útil seja efetivamente cumprido, o enchimento deverá prover à mina estabilidade geomecânica local a nível de câmaras abertas com paredes verticais de backfill estáveis e também estabilidade global a nível de contato entre níveis e galerias de acesso. Isso somente será alcançado se a nova caracterização for corretamente aplicada. / As a consequence of the ongoing reduction of mineral resources and the high cost involved in the construction of a mine, the maximum recovery of a mineral deposit becomes a fundamental issue. Therefore, besides the need of caution on the choice of the mining method, it is possible to make use of additional recovery methods, such as the recovery of pillars. This research was based on the determination of the characterization of the fill (cemented backfill) used in avoid stopes that allows the subsequent recovery of adjacent pillars. The characterization of the fill consists of determining the uniaxial compressive strength of the backfill required for an efficient filling, developing an optimal particle-size distribution for the aggregates and finding the cement-water ratio necessary to reach the desired resistance. The methodology developed to obtain the new characterization is comprised of several steps which include field work and laboratory tests. First, cement dosing parameters and particle size of the aggregates (already used at the filling manufacturing plant), as well as their corresponding strength, were obtained through analyses in the field work. Then, theoretical definitions of the ideal cement dosing and optimal particle-size analysis were carried out based on the uniaxial compressive strength that has been identified as necessary to comply with the geomechanical requests from the rock mass, and then later, the new theoretical characterization was tested by making backfill samples, followed by execution of compression tests. During the first stage of this methodology, it has been identified a high proportion of clay particle size for the aggregates, that have affected the strength results obtained from the characterization used initially. From this point, we decided to build the optimal particle-size curve without this fraction. Uniaxial compressive strength, calculated as 2.69 MPa, was obtained from the long-term planning that determines the full recovery of the existing pillars in the mine. In this way, the entire area to be mined was considered as a single block. Finally, the cement dosing has been identified as 4% by weight, which together with the optimal particle size, is able to achieve the expected strength values. In order to effectively fulfill the mine production planning over the next years of lifespan, the filling should provide the mine local geomechanical stability at open stopes level, with vertical walls of stable backfill, and also global stability at the contacts between levels and access galleries. This will only be achieved if the new characterization is correctly applied.
52

Investigation of Heat Dissipation Enhancement due to Backfill Modification in Ground Coupled Heat Pump Systems

January 2012 (has links)
abstract: Due to the lack of understanding of soil thermal behavior, rules-of-thumb and generalized procedures are typically used to guide building professionals in the design of ground coupled heat pump systems. This is especially true when sizing the ground heat exchanger (GHE) loop. Unfortunately, these generalized procedures often encourage building engineers to adopt a conservative design approach resulting in the gross over-sizing of the GHE, thus drastically increasing their installation cost. This conservative design approach is particularly prevalent for buildings located in hot and arid climates, where the soils are often granular and where the water table tends to exist deep below the soil surface. These adverse soil conditions reduce the heat dissipation efficiency of the GHE and have hindered the adoption of ground coupled heat pump systems in such climates. During cooling mode operation, heat is extracted from the building and rejected into the ground via the GHE. Prolonged heat dissipation into the ground can result in a coupled flow of both heat and moisture, causing the moisture to migrate away from the GHE piping. This coupled flow phenomenon causes the soil near the GHE to dry out and results in the degradation of the GHE heat dissipation capacity. Although relatively simple techniques of backfilling the GHE have been used in practice to mitigate such coupled effects, methods of improving the thermal behavior of the backfill region around the GHE, especially in horizontal systems, have not been extensively studied. This thesis presents an experimental study of heat dissipation from a horizontal GHE, buried in two backfill materials: (1) dry sand, and (2) wax-sand composite mixture. The HYDRUS software was then used to numerically model the temperature profiles associated with the aforementioned backfill conditions, and the influence of the contact resistance at the GHE-backfill interface was studied. The modeling strategy developed in HYDRUS was proven to be adequate in predicting the thermal performance of GHE buried in dry sand. However, when predicting the GHE heat dissipation in the wax-sand backfill, significant discrepancies between model prediction and experimental results still exist even after calibrating the model by including a term for the contact resistance. Overall, the thermal properties of the backfill were determined to be a key determinant of the GHE heat dissipation capacity. In particular, the wax-sand backfill was estimated to dissipate 50-60% more heat than dry sand backfill. / Dissertation/Thesis / M.S. Design 2012
53

Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments

Black, Rebecca Eileen 01 December 2018 (has links)
Low-strength cellular concrete is a type of controlled low-strength material (CLSM) which is increasingly being used for various modern construction applications. Benefits of the material include its ease of placement due to the ability of cellular concrete to self-level and self-compact. It is also extremely lightweight compared to traditional concrete, enabling the concrete to be used in fill applications as a compacted soil would customarily be used. Testing of this material is not extensive, especially in the form of large-scale tests. Additionally, effects of skew on passive force resistance help to understand performance of a material when it is used in an application where skew is present. Two passive force-deflection tests were conducted in the structures lab of Brigham Young University. A 4-ft x 4-ft x 12-ft framed box was built with a steel reaction frame on one end a 120-kip capacity actuator on the other. For the first test a non-skewed concrete block, referred to as the backwall, was placed in the test box in front of the actuator. For the second test a backwall with a 30° skew angle was used. To evaluate the large-scale test a grid was painted on the concrete surface and each point was surveyed before and after testing. The large-scale sample was compressed a distance of approximately three inches, providing a clear surface failure in the sample. The actuator provided data on the load applied, enabling the creation of the passive force-deflection curves. Several concrete cylinders were cast with the same material at the time of pouring for each test and tested periodically to observed strength increase.The cellular concrete for the 0° skew test had an average wet density of 29 pounds per cubic foot and a 28-day compressive strength of 120 pounds per square inch. The cellular concrete for the 30° skew test had an average wet density of 31 pounds per cubic foot and a 28-day compressive strength of 132 pounds per square inch. It was observed from the passive force deflection curves of the two tests that skew decreased the peak passive resistance by 29%, from 52.1 kips to 37 kips. Various methods were used to predict the peak passive resistance and compared with observed behavior to verify the validity of each method.
54

Shaking Table Testing of Cyclic Behaviour of Fine-Grained Soils Undergoing Cementation: Cemented Paste Backfill

Alainachi, Imad Hazim 01 December 2020 (has links)
Cemented paste backfill (CPB) is a novel technology developed in the past few decades to better manage mining wastes (such as tailings) in environmentally friendly way. It has received prominent interest in the mining industry around the world. In this technology, up to 60% of the total amount of tailings is reused and converted into cemented construction material that can be used for secondary support in underground mine openings (stopes) and to maximize the recovery of ore from pillars. CPB is an engineered mixture of tailings, water, and hydraulic binder (such as cement), that is mixed in the paste plant and delivered into the mine stopes either by gravity or pumping. During and after placing it into the mine stopes, the performance of CPB mainly depends on the role of the hydraulic binder, which increases the mechanical strength of the mixture through the process of cement hydration. Similar to other fine-grained soils undergoing cementations, CPB’s behavior is affected by several conditions or factors, such as cement hydration progress (curing time), chemistry of pore water, mixing and curing temperature, and filling strategy. Also, it has been found that fresh CPB placed in the mine stopes can be susceptible to many geotechnical issues, such as liquefaction under ground shaking conditions. Liquefaction-induced failure of CPB structure may cause injuries and fatalities, as well as significant environmental and economic damages. Many researches studied the effect of the aforementioned conditions on the static mechanical behavior of CPB. Other researches have evaluated the liquefaction behavior of natural soils and tailings (without cement) during cyclic loadings using shaking table test technique. Only few studies investigated the CPB liquefaction during dynamic loading events using the triaxial tests. Yet, there are currently no studies that addressed the liquefaction behavior of CPB under the previous conditions by using the shaking table technique. In this Ph.D. study, a series of shaking table tests were conducted on fresh CPB samples (75 cm × 75 cm ×70 cm), which were mixed and poured into a flexible laminar shear box (that was designed and build for the purpose of this research). Some of these shaking table tests were performed at different maturity ages of 2.5 hrs, 4.0 hrs, and 10.0 hrs, to investigate the effect of cement hydration progress on the liquefaction potential of CPB. Another set of tests were conducted to assess the effect of the chemistry (sulphate content) of the pore-water on the cyclic response of fresh CPB by exposing cyclic loads on couple of CPB models that contain different concertation of sulphate ions of 0.0 ppm and 5000 ppm. Moreover, as part of this study, series of shaking table test was conducted on CPB samples that were prepared and cured at different temperatures of 20oC and 35oC, to evaluate the effect of temperature of the cyclic behavior of CPB. Furthermore, the effect of filling strategy on the cyclic behavior of fresh CPB was assessed by conducting set of shaking tables tests on CPB models that were prepared at different filling strategies of continuous filling, and sequential or discontinuous (layered) filling. The results obtained show that CPB has different cyclic behavior and performance under these different conditions. It is observed that the progress of cement hydration (longer curing time) enhances the liquefaction resistance of CPB, while the presence of sulphate ions diminishes it. It is also found that CPB mixed and cured in low temperature is more prone to liquefaction than those prepared at higher temperatures. Moreover, the obtained results show that adopting the discontinuous (layered) filling strategy will improve the liquefaction resistance of CPB. The finding presented in this thesis will contribute to efficient, cost effective and safer design of CPB structures in the mine areas, and will help in minimizing the risks of liquefaction-induced failure of CPB structures.
55

Fresh and Hardened Properties of Cemented Paste Backfill with Ternary Binder

Sagade, Aparna 23 June 2023 (has links)
The mining industry is a major economic driver and job creator for many countries. However, mining is associated with geo-hazards and environmental issues, such as the disposal of large volumes of waste, acid mine drainage, and ground subsidence. As a result, efficient mining waste management is crucial for sustainable development. The geotechnical, economic, and environmental benefits of cemented paste backfill (CPB) have piqued the interest of researchers and academicians worldwide, making it an essential aspect of underground mining management. CPB is a thickened cementitious combination of dewatered tailings (70 - 85 wt.%), binders (usually 3 to 8% wt.%), and water used to backfill mine waste into underground mining stopes. Despite being used in small amounts, the cost of cement makes up to 80% of the cost of backfilling operations. In addition, clinker production accounts for 5-8% of global human created carbon dioxide (CO₂) emissions. This predicament necessitates the development of a viable alternative to cement. Partially substituting cement with supplementary cementitious materials like fly ash, blast furnace slag, natural pozzolans, and other materials has been increasingly prevalent in CPB. It is evident that the addition of slag to cement can increase the mechanical strength of CPB at the advanced ages but decreases the strength and suction development due to the slow reaction kinetics in the CPB at the early ages, which may negatively affect the mechanical stability of the CPB, mining cycle, and safety of mineworkers. Moreover, the supply of these materials is limited and may not be enough for the future needs of the industry. Furthermore, there has been a surge in interest in using limestone powder (LS) owing to its abundance, low cost, and lack of environmental costs which are associated with Portland cement - Type 1 (PCI). The addition of LS accelerates hydration at the early ages, thus resulting in high early strength, but the dilution effect can reduce the late strength. The combination of LS and slag in a ternary blended cement can be potentially used as a binder for CPB with acceptable strength development at the early and advanced ages while lowering the cost of the CPB and the carbon footprint of the mining industry. Nevertheless, the rheology, mechanical strength, and stability are important key performance quality criteria for CPB; however, the effect of ternary cement blends on these parameters is not well known. In this research program, the impact of the binary and ternary cement blends on (i) the fresh properties of CPB, such as the rheological properties (yield stress, viscosity) and setting time, and (ii) the strength and suction development of CPB are investigated. To understand the effect of substituting slag with LS in the binary binder in the first phase of the study, binary binders with two differ-ent PCI: Slag proportions of 50/50 and 80/20 are examined with no limestone, followed by replacing slag with an increasing amount of LS from 0 to 20 wt. % of the total binder, with a constant cement content, over a period of 4 hrs (0, 0.25, 1, 2, and 4 hrs) of curing at room temperature. In the second phase, the effect of a ternary binder (PCI-Slag- LS) with varying proportions on the suction development and the mechanical behavior of hardened CPB is investigated over a curing period of up to 90 days. The changes in strength of these binary and ternary binders on the CPB sample are tested for 1, 3, 7, 28, 60, and 90 days. An unconfined compression test (UCS) is conducted to evaluate the strength development. The microstructure of the mixes is examined through mercury intrusion porosimetry (MIP) for changes are validated through monitoring for the development of hydration and suction, electrical conductivity (EC), and temperature, which is carried out for up to 30 days. This is followed by a microstructure analysis with a thermogravimetric/differential thermogravimetric test on fresh and hardened samples. The results of the first phase show that an increase in the percentage of substituted cement in the binary binder (from PCI/Slag 80/20 to 50/50) increases the yield stress of the CPB but decreases the viscosity of the mix. However, the addition of LS as a substitution for slag shows a considerable decrease in the yield stress of the control mix with an increase in viscosity with increasing dosages of LS, thus indicating an improvement in the flowability of CPB. The second phase results indicate that the slow hydration kinetics of slag influences early age suction and strength changes in the binary sample with a high slag content (50/50); however, its latent hydraulic and pozzolanic properties enhance strength gain after 28 days. The addition of 5% limestone to the ternary blend increases the strength gain by up to 7 days compared to the binary control samples. Indeed, the presence of LS influences the rate of hydration of cement and slag through both physical (filler, nucleation, dilution) and chemical (hydrate) effects. However, substituting more than 10% LS for slag affects the mechanical performance at all ages. Overall, up to 50 wt.% slag and 10 wt.% limestone with cement as a ternary binder can be used without significant compressive strength loss. This study demonstrates that the partial substitution of ordinary Portland cement (OPC) with varying percentages of slag and LS is complementary, and overall, the interaction of slag and LS is observed. The optimal use of LS and slag in a ternary system may serve as a sustainable alternative to the commonly used OPC and PCI/Slag binders, thereby reducing the energy consumption and carbon footprint associated with cement. The findings of this study will ultimately help to develop a better understanding of the impact of ternary blends with increasing percentages of LS on the rheology and setting time of CPB mixes and mechanical strength changes in designing an efficient mixing plant, particularly its transport system.
56

Effects of Sodium Chloride on the Rheological Properties, Setting Time, Self-desiccation and Strength of Cemented Paste Backfill

Carnogursky, Elizabeth Alexandra 26 July 2023 (has links)
Cemented paste backfill (CPB) is a highly advantageous method of backfill that has been increasing in use in recent decades as it provides many environmental, economic, and practical benefits. When combined with cement and water, it recycles a portion of the dewatered tailings produced from mines as backfill for underground stopes. CPB is transported from the plant on the surface through pipes to the stopes, sometimes over several kilometers, and then placed in underground mining cavities (stopes) to support the ground or rock mass. Therefore, it must meet certain rheological, setting time, and strength gain performance requirements. Additionally, as many mines around the world are located in areas of freshwater scarcity, and societies are holding corporations to ever higher standards for humanitarian and environmental responsibility, many mines are seeking to utilize locally available, saline groundwater or seawater as mixing water in backfill. The impacts of this decision on the rheological, setting, and strength properties of CPB must be better understood to allow for the confident selection of this convenient solution, as the risks associated with improper design include huge costs due to pipeline clogging and death or injury due to backfill failure and ground subsidence. NaCl is a contributor to natural groundwater and seawater salinity and may be present in concentrations of up to 300 g/L. An additional cost-saving measure favoured by mines is to replace some of the costly Portland cement with much cheaper supplemental cementitious materials such as blast furnace slag. Therefore, this thesis examines the impacts of NaCl concentration and binder composition on the yield stress, viscosity, initial and final setting time, and strength development of CPB. A robust experimental program has been undertaken in which CPB was subjected to the above-mentioned tests in addition to pH and MIP testing, SEM, TG/DTG, XRD, and zeta potential analyses, and electrical conductivity, suction, and water content monitoring. CPB samples were made with synthetic silica tailings, Portland cement, and water with NaCl concentrations of 0 g/L, 10 g/L, 35 g/L, 100 g/L, and 300 g/L and CPB made with 35 g/L and slag replacement percentages of 0%, 25%, 50%, and 75%. Additional samples tested were made with natural gold tailings, Portland cement, and NaCl concentrations of 0 g/L and 35 g/L for verification. Rheological testing was conducted at 0 minutes, 15 minutes, 1 hour, and 2 hours after mixing, and UCS testing was conducted after 1 day, 3 days, 7 days, 28 days, and 60 days of curing. Additional tests or analyses were performed on selected mixes and curing times for optimum insight and monitoring was conducted from 0 to 28 days after curing. It was found that low concentrations of NaCl (10 g/L and 35 g/L) generally had favourable impacts on the UCS and setting times of CPB, while higher concentrations had negative impacts. The impacts of slag replacement on UCS development of saline CPB were also generally favourable. However, the impacts of slag replacement on initial setting time were generally negative, and favourable at higher replacements (50% or more) for final setting time. Low NaCl concentration led to slightly negative impacts on yield stress, especially at longer curing times (1-2 hours), but high concentrations greatly reduced the yield stress. NaCl concentration had minor impacts to viscosity, with any concentration leading to a slightly higher initial viscosity but slightly lower viscosity at longer curing times. Slag replacement content had negligible effects on yield stress, but led to favourable decreases in viscosity over longer curing times. The combination of positive and negative impacts indicates that care must be taken to knowledgeably prioritize or balance critical properties in mix design, though there is indication of opportunities for overall improvement. Supplemental testing provided useful information to explain the mechanics behind the results which will allow designers to carefully select the required components for the desired properties.
57

Large-Scale Testing of Reinforced Lightweight Cellular Concrete Backfill for MSE Walls

Lundskog, Christian E 03 August 2022 (has links) (PDF)
The basic mixture of lightweight cellular concrete (LCC) consists of cement, water, and a stable foaming agent. It is generally classified as having a density of less than 50 pounds per cubic foot (pcf), which is less than both traditional concrete and backfill materials. LCC has gained popularity in construction due to its lightweight, self-leveling, and ease of production and placement. These characteristics have made LCC a popular lightweight backfill material for mechanically stabilized earth (MSE) walls. However, there has been relatively little research on the large-scale behavior of LCC as a MSE backfill. Therefore, large-scale test results defining failure mechanisms and the strength criteria of reinforced LCC are extremely valuable. In this study, a three walled test box (10 ft wide x 12 ft long x 10 ft high) was constructed to contain the LCC. Two 5 ft tall x 10 ft wide MSE wall segments were poured and cured, before being placed as the fourth wall of the test box. The test box was built with a steel reaction frame to reduce lateral deflections during testing of the LCC that was not in the direction of the MSE wall, thus creating a two-dimensional or pseudo "plane strain" geometry. The box was filled with four lifts of Class II LCC 2.5 feet thick with ribbed-strip reinforcements at the center of each lift. After the LCC was cured, two static load tests were performed by applying surcharge to the surface of the LCC using six hydraulic jacks. The static load tests compared the LCC behavior of an MSE wall in comparison with unreinforced LCC without MSE wall panels. Multiple forms of instrumentation were used to understand the behavior of the LCC during surcharge loading. The instrumentation also helped to characterize the strength criteria for LCC based on failure in the large-scale and laboratory testing. This was done to determine the failure mechanism for the MSE wall retaining system with ribbed-strip reinforced LCC backfill. Data was gathered primarily through lateral wall pressures, lateral wall deflections, and forces induced on the ribbed-strip reinforcements. The test results show that an MSE wall with LCC backfill can withstand significant surcharge loading with limited axial and lateral deformations. However, failure occurred at surcharge pressures of about 60% of the unconfined compressive strength. The use of a retaining system significantly increased the failure loads and produced a more ductile failure mode than Class II LCC with a free-face. The active pressures observed are similar to a granular material with a friction angle (ϕ) of 34°, Ka=0.28, and a cohesion of 700 to 1600 psf for Class II LCC. Likewise, failure of the free-face occurred at a value predicted by Rankine theory with ϕ = 34° and c = 1600 psf.
58

Wave induced silty seabed response around a trenched pipeline

Gao, Y., Zhang, J., Tong, L., Guo, Yakun, Lam, Dennis 18 March 2022 (has links)
Yes / Most previous studies on seabed liquefaction around offshore pipelines focused on investigating the wave-induced pore pressure variation in sandy seabed, while limited studies have been conducted for silty seabed. In this study, laboratory experiments are conducted to investigate wave-induced pore pressure within silty bed around the buried or partially/fully backfilled pipeline. Results show that residual pore pressure is the dominant factor that causes the liquefaction in silty soil. For buried pipeline, liquefaction first occurs at the pipeline bottom, then propagates upwards and downwards vertically. Comparing with the buried pipeline, the liquefaction potential is reduced when the pipeline is placed in a trench. To protect pipeline from liquefaction, backfill is recommended. Experiments show that the residual pore pressure significantly decreases as backfill depth increases. Fully backfilled pipeline is the best choice for silty seabed. Furthermore, backfill material with coarser particle size than native soil provides better protection for pipeline. In this study, there is no residual pore pressure around the pipeline periphery for three backfill soils (d50 = 0.15 mm; 0.3 mm; and 0.5 mm) tested. Results indicate that for the range of this experimental study, d50 = 0.15 mm is the best backfill material that provides the most protection for the underneath pipeline. / National Postdoctoral Program for Innovative Talents granted by China Postdoctoral Science Foundation (Grant No. BX20190105) and the Fundamental Research Funds for the Central Universities (Grant No. B200202062).
59

Effect of Superplasticizer on the Performance Properties of Cemented Paste Backfill at Different Curing Temperatures

Haruna, Sada 28 October 2022 (has links)
Cemented paste backfill (CPB) technology is widely used in the mining industry as an effective means of tailings disposal. CPB is a mixture of tailings, binder, water, and additional admixtures when required. It is prepared in a mixing plant on the ground surface and then transported into the mine cavities through pipelines either by gravity and/or using pumps. To ensure efficiency during transportation and avoid pipe clogging (which can cause unnecessary delays and loss of productivity), fresh CPB must have sufficient flowability. To achieve that, high-range water reducing admixtures, also known as superplasticizers, are usually added to the CPB during mixing. These admixtures are widely used in the construction industry due to their ability to improve flowability without undermining other important engineering properties. However, their influence on the rheology, mechanical strength and environmental performance (reactivity and permeability) of CPB is not fully understood. Thus, experimental studies were conducted to investigate the effects of superplasticizers on the performance properties of cemented paste backfill at different curing temperatures. Yield stress and viscosity of fresh CPB cured for 0, 1, 2, and 4 hours were measured using a vane shear device and a Brookfield Viscometer respectively. Unconfined compressive strength (UCS) of samples cured for 1, 3, 7, and 28 days was determined in accordance with ASTM - C39. Superplasticizer contents were varied as 0%, 0.125%, and 0.25% of the total weight of the CPB. Preparations and curing of the specimens were performed at controlled conditions of 2, 20, and 35 °C to investigate the effect of ambient or curing temperatures. To have a better understanding of the environmental performance of CPB containing superplasticizer, reactivity, and hydraulic conductivity up to 90 days of curing were also investigated. The reactivity was measured using oxygen consumption test while hydraulic conductivity was measured using flexible wall permeability test. Microstructural analyses (thermogravimetric analyses, X-Ray diffraction, and mercury intrusion porosimetry) and monitoring tests (pH, zeta potential, electrical conductivity, and matric suction) were carried out to understand the principles behind the changes of the observed properties. The obtained results show that superplasticizer dosage and temperature variation have significant effects on the rheology, strength development, hydraulic conductivity and reactivity of the CPB. The polycarboxylic ether-based superplasticizer significantly reduces the yield stress and viscosity by creating strong electrostatic repulsion between the solid particles in the CPB and by steric hinderance. The CPB containing the superplasticizer remains fluid for longer period (as compared with the CPB without superplasticizer) due to the retardation of binder hydration. However, high curing temperature induces faster cement hydration, which thickens the fresh CPB. The unconfined compressive strength (UCS) of the CPB containing superplasticizer was observed to be lower in the early age (up to 7 days), which is also attributed to retardation of the binder hydration. At later ages, the superplasticizer improves the mechanical strength as the binder hydration accelerates and the solid particles self-consolidate. Coupled THMC processes in the CPB showed the role played by the changes in electrical conductivity, volumetric water content, matric suction, and temperature on the development of mechanical strength of the CPB containing superplasticizer. Similarly, addition of the superplasticizer in the CPB decreases both the hydraulic conductivity and reactivity of CPB, thus improving its environmental performance. The improvement is largely attributed to enhanced binder hydration and self-consolidation which decrease the porosity of the CPB. Increasing the curing temperature was found to magnify the improvement of the CPB properties by inducing faster binder hydration. The findings from this study will undoubtedly inform the design of CPB structure with better mechanical stability and environmental performance.
60

Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments

Remund, Tyler Kirk 01 September 2017 (has links)
Low-strength cellular concrete consists of a cement slurry that is aerated prior to placement. It remains a largely untested material with properties somewhere between those of soil, geofoam, and typical controlled low-strength material (CLSM). The benefits of using this material include its low density, ease of placement, and ability to self-compact. Although the basic laboratory properties of this material have been investigated, little information exists about the performance of this material in the field, much less the passive resistance behavior of this material in the field.In order to evaluate the use of cellular concrete as a backfill material behind bridge abutments, two large-scale tests were conducted. These tests sought to better understand the passive resistance, the movement required to reach this resistance, the failure mechanism, and skew effects for a cellular concrete backfill. The tests used a pile cap with a backwall face 5.5 ft (1.68 m) tall and 11 ft (3.35 m) wide. The backfill area had walls on either side running parallel to the sides of the pile cap to allow the material to fail in a 2D fashion. The cellular concrete backfill for the 30<&degree> skew test had an average wet density of 29.6 pcf (474 kg/m3) and a compressive strength of 57.6 psi (397 kPa). The backfill for the 0<&degree> skew test had an average wet density of 28.6 pcf (458 kg/m3) and a compressive strength of 50.9 psi (351 kPa). The pile cap was displaced into the backfill area until failure occurred. A total of two tests were conducted, one with a 30<&degree> skew wedge attached to the pile cap and one with no skew wedge attached.It was observed that the cellular concrete backfill mainly compressed under loading with no visible failure at the surface. The passive-force curves showed the material reaching an initial peak resistance after movement equal to 1.7-2.6% of the backwall height and then remaining near this strength or increasing in strength with any further deflection. No skew effects were observed; any difference between the two tests is most likely due to the difference in concrete placement and testing.

Page generated in 0.0272 seconds